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Abstract

The paper aims to prove interchangeability between specific differential
operators and series, which is a fundamental fact constituting solvability of
forced capillary-gravity waves problem outside a cylindrical wavemaker of

finite depth under Hocking’s edge condition.
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1. Introduction

The edge condition has been widely recongnized as an open question because of its
complexity and uncertainty. In 1968, edge condition of fluid was first considered
by Evans ([1], [2],) and Hocking [3] proposed a different model later in 1987. Both
models were studied by various papers based upon different settings, including
Miles ([4], [5]) and Shen et al ([8], [9], [10].) Originally Hocking’s was considered
physically more plausible than Evans’s, but Miles ([4], [5]) argued that Hocking’s
setting was not practical in the case of a heaving cylinder with stick/slip edge con-
dition. In 1995, his argument was supported by Ting and Perlin [6] through their
study on edge condition, which used modern equipment to record edge condition
of different types of fluid and consequently proposed a new edge condition. It has
been regarded as the most practical model up to date.

According to the result found by Ting and Perlin, however, one may find
that Hocking’s edge condition is still valid concerning non-stick/-slip condition.
Hence the problem on non-stick/-slip oscillating wavemaker under Hocking’s edge
condition needs further study. Constructing the exact solution of this problem
in finite depth case is possible only if convergence of several series related to the
problem is thoroughly studied. Similar research involving interchangeability of
operators [12] may be compared to this assertion.

Here we focus our attention to the finite depth problem, present the related

operators, and prove the convergence of these series.



2. The finite depth problem

The governing equations of the problem considered are as follows:
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on V = (a,00) x (—1,0) for some a > 0; (2.1)

5 2 19 m?
—-u,“-pwh,c;—Tﬁl';a—T(w+;g—T—2>apzonr>a,z=0, (22)
e, = 0 on z= -1, (2.3)
v, = [f(2) on r=a, (2.4)
@ — Cocosh(ko(l + 2))H D (kor) as r — oo, (2.5)

and the edge condition

@, = iwdp, at =, r=ga (2.6)
where
0? 10 d m? 0?
Lo=L — | - =4+ —. 2.7
? 1+ 9z  rir (? dr) r? + dz2 (2.7)

The original process of deriving these equations is shown in Appendix, and the
equation (2.6) is Hocking’s Edge Condition. Notice that ¢ is the potential
function, T is the surface tension coeflicient, w is the angular frequency, m is the
azimuthal munber, ¢ is some real constant, f is an arbitrary smooth function, Cy
is a coustant, kg is the positive real root of a (Ta? + 1)sinha — w?cosha = 0,

and H ;(“[)(-) is the Hankel's function of the first kind with order m. The following



is an expansion theorem presented by Rhodes-Robinson [5], and proved by Yeh

8] when f is an arbitrary smooth function defined on (—1,0) :

Theorem 2.1. An arbitrary smooth function u(z) for —1 < z < 0 possesses a

series expansion wn the following form

ko Aj(cosh k) (cosh(ko(1 + 2)))
2ko(1 + Tk3) + (1 + 3TkZ) sinh 2k,

o, =]

kn AL (cos k) (cos(kq (1 + 2)))
—r Z 2
n=1

u(z) = —4drm

w(1 — Tk2) + (1 — 3Tk2) sin 2k,

where x£ky, £iky, £iky, - Xik, -+ are zeros of
Afla) =« (Tc12 -+ 1) sinh o — w? cosh v = 0,
lig 5 0, Tt By 2 g o8 = v i gy o s

}‘\,‘2 -0
Al = _1+—T0“ / u(§) cosh{ko(l + &))d€E + Ty,

m(cosh ko) J_4

. 1 Tz Jo
Al =——7— % / u(€)cos(k, (1 4+8)dE+ T, n=1,23, -

m(cosky) J_,

and ji is an arbitrary parameter.
For simplicity, let

By = 2kg(1 +Tkd)+ (1 4+ 3Tk2)sinh 2k,

T

B, = 2k, (1—Tk2)+(1-3Tk2)sin2k,, n=12,3,---

(2.8)



and rewrite the expansion as

2ko(1 + Tk )(cosh(ko(1l + 2))) ]Bl weosh(ko(l + &))dE

u(z) = 2 7

55 = T conln( w) S, wcos(ha(l +€))dé

n=1 n
_onTyu {2!{0((:0511 ko) (cosh(ko(1 + 2)))

Bo

= kn(cos ky)(cos(kn(1 + 2))

’ Z -‘Bn )
Then let
u(z) = 2ui(z) — 2T puy(2), (2.14)

where

1 0

(2] = j_ [W.U( —}—TL'S)((‘osh(ku(l-i-:)))/

J-1

u(€) cosh{ko(l + 5))(15]

-0

#23° 5 [ln(1 = T costin(1 +2)) |

n=1 "% sl

w(&) cos(k, (1 + 5))d§} )

(2.15)

ug(z) = ;D {ng(msh ko) (cosh(ko(l + 3)))}

+22[—(<mn )(cos(kn(1 +:)))] (2.16)

There is a zero term —2aTpug(z) in (2.14). However, the presence of zero term
and the independent parameter p have not been explained. It will become clear

after we find the solution. We only note that i will be determined by the edge

condition.
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The next theorem is the main result of this paper. By the conjecture of Yeh

([11], p.7), we obtain the series

@(r,z) = i,ﬁl(»ﬁ)%l(r), (2.17)

whete m
&) = Yo he, (218)
fol2) = i fadilesh)coshi + ) (2.19)

" 9ko(L + TK2) + (1 + 3TH2)(sinh 2ko)’
B ky A (cos k) cos(kn(1 + 2))
" 2k, (1 — Tk2) + (1 — 3Tk2)(sin 2k,,)’

fm(:) = —4 = 1,2, 5, (220)

which constitutes the possible solution of governing equations, and where A%, Ky,
J=0,1,2,3,...... are stated as in equations (2.9) to (2.11). Furthermore,
1
an) (A’.U’.")
! ' b
Hr(n) (Ag()‘)
I(m. (kn ‘w)

o (r) = —/— n=123 ...
Yalr) K! (kna) " T

where Hz(ff) (-) is Hankel’s function of Ist kind of order m, K, (-) is modified

Bessel's function of 2nd kind of order m. When (2.17) is plugged into governing



equations, the [ollowing series

(2.23)

(2.24)

(2.25)

are encountered, where £, and L, are expressed as in (2.7). So we have the

next Theorem to claim that these differential operators can be taken inside of the

series, which suggests that governing equations are solvable. Method of obtaining

solution as well as related issue of the problem will be discussed in another paper.

Theorem 2.2. The differential operators Ly, Lo, 2

into the series as shown in the above.

Proof. All invelving differential operators include

their linear combinations. Note that uniform convergence of the series >

ar

.
5 an d

a 9
dr? 827

a2
dzdr

82

arz 1

can be taken

a2 &?
9220 9zor
o0

n=0J7

and

()71 (r)

with respect to r and = garantees the interchangeability of the sum and the oper-

ators

a9

ar

and r)% Furthermore, that

2 o
ar2? 922

and di% can be taken in to the sum

only if the uniform convergence of 3 >~ o fl(z)7v,(r) and > 77 fu(2)7,(r) with

respect to r and = may be established.

I). Let’s look at the uniform convergence of series » > o fu(z)v,(r) first.
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For sufficiently large n, we find that

len(r 2)l = | fal2)] 1yl
‘ { cus ky, cos(k, (142))
I—TkZ
= |—4n
1-3Tk
2+ T (1—Tk2)
w 'm (’I‘Jnlr)
I m (;”Ti )
cus k 7
1-TkE 1— Tk2
S Am { 9 l—.'i'I‘k%‘) 2% |:( T COS kn) ”f” - TJu:| } X
kn (1—TkZ)
al cus ky
I e (o |
- 1—3Tk2 t :
“~ mf‘?'_) ‘Rm (!"CHCL)
where
Ifll = max{[f ()| =€[-1,0]},
w?
k, = nm+ T ™ I:gn(].—TA%J , VneN,
k. (1 — Tk?
-1 < cosk, ==+ ( W <1,
\/k-g_ (1 — Tk2)? + ot
3
-1 < sink, = - <1,
\/k 1— Tkz + wt
-1 < sin2k, <1,
lcos (kn (1 +2))] £ 1, Vze[-1,0],
and

0
[ 7 @costhn 1+ )| <11

Ko (k)

K!

m

(kna)

: x[ C‘T*)/?@)ow<ufnm+T}
5 — [ =i cos (k, ¢ N
i sin 2k, T COS ki, i f

(2.26)



Since

1
. T e—’" e ¢ m—z
-Km (,’) = l/ efttm—% 1 — — dt,
2r (m—3)!o 2r
. m R
K ;frl (',) = _[‘*m ( ‘) - I\rn+1 (r) ; T 2 a,
we may find
e "
Kpn(r) ~ when 7 >> m,

T .
K (i) ey e (ﬂ — 1) , for r>>m.

Consequently.

Ko (Byf) oo

™ T
—k.r
bl! Y (Fln]) o 9}/ 'r'e (; s = 1)
<ivn v

for sufficiently large n, » > a. Hence

kZa a _,
~ (1) ~ T e -‘.,J(rfn). 2-: 5
fn(r) (m - knu.) \/':P i)

By euqation (2.26) and the asymptotic expression in (2.33), we have

4l - (=8 )

K, (k,r) :
lo,(r, 2} < 1-3Tk2 i’” ’” e
2= LT Hon (fnt)
4 FII + flrrrT,r‘x:J 2
N | ||.f||_I .j':om,—, X*A kpa | \ﬁxek (o) (2.35)
9 ol Ry inl — 1 a

47 E(1-Tk2)

where = € [—1,0], k. >> m for sufficiently large n. Use Root Test, we find

1
4 17TT.' n . 1 N
i, /A< tim | NI ke [ avE e
o ¥l = = S ]—.SIﬁ:ﬁ e " 7
<7 B (1-Tk2) Koy
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Then let’s consider the following:

).

1
[+ = AR
lim e = lim exp |—1In _
n—0o0 ‘2__ 1-3Tk2 n—oo n 9 _ 1-3Tk2
R (1—Tk2) 27 ka(1—Tk2)
Since
400+ | 4rT
i o —Tk? - . ThLp 1— BT;”n

| = [lﬂ(““f |+‘rm>‘1“ 2T =Tk

= K, (1—Tk2)

= In@[f[) -m2=In|1),
and
[ 1l | |
lim | —In — = lim —-In(2||f||} =0
n—oo | N ‘2 _ 1—-3Tk2 n—oc 1
k. (1-TkZ)
[+ =]
= lim = = L (2.36)
n—oo = Cs
L |2‘ kn(1-Tk2Z)

i)

1
koa | K 1 kna
—| =exp—In :
— m P _m ’
4% 4 C

1 .
lim — [ln kna —In (a - ﬂ)}
n—oa 1l ,i"’.”

. Ink,a o1 m
= lim — lim —Infla—— .
n—oo T n—oo 11 k.,

where
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Note that

In k¢ 1 #
,}Ei n” 9 ,;h_{r.}o - In {'mm + aTan™! {—'I‘?n (li Tkﬁ)} } =0
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for

and ?—‘lln (a —

1ii).
where
So

iv).

k,

n—oc N

Then we have

In(nma
lim g =0,
n—oo n

2
. - Lo .
S e [k {1~ ch,g)] =0,

ﬂ) — (). Therefore,

R,
. kna |"
lim | =e=1 (2.37)
n—oo | (1 — —
o
ay s 1
g 2n
(f) = exp — (ne—Inr), r>a
1 2n

1
lim — (Ina—1Inr) =0.

n—oo AN

Tim (5) s il ], (2.38)

(,;_)'

(3

lim = (r—a) = (r—a) 11151;3 - {I‘m + Tan™! LH(I—T;‘?] }

il 2
= (r—a) lim 7+ lim = Tan™' {#]

n—oo n—oc T &= T'ILIQL)
= w(r—a).
lim e~ wlr=a) = g=7(r=a), (2.39)
n—oo
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Combining the results from (2.36) to (2.39), we conclude that

A
- B L R | N I A
nlloga ‘Wra(:'!"’” = H.E:Ic}c 3Tk ) (;) Xe
27 RO-TH) b

— 1x1x1xe ™9 1,

oo

Thus we see that for = € [—1,0] and r > q, the series ¢(r, 2) = >~ o fa(2)7,.(r)
converges uniformly, and the differential operators 2, £ are interchangeable with

dz? or
Z on {(r,2)| (r,z) € [-1,0] X (a,00)}.

IT). Consider the uniform convergence of >  f!(z)7,(r) :

% 7
\a ‘r‘u(', :)‘ = < ﬂ
k,, cos ky, sin(k,, (1+2)) .0
- 1 — Tk
{ R } - (52 [ 1@ 0+ 9)dc+ 1
+ e Tkz)sm 2k, Teos
[\m(
K, (ke )
ky cos k
1—Th2 Tk? BB
< dmy ———————— X =T —
= {2_(_L) (i) ’“]} K, ()
1k, I1F) = anTuke (2585)| 1K (o) |
- o _ 18Tk _ K (kna)|’ Sl
2 kn(1—Tk2) T

Following the identities from (2.27) to (2.32) and

sin{k, (1 +2))| <1, Vze[-1,0],
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we can see that

7 47Tk,
‘ o 4}’4; Hf” - ( 111']'_{};% ) I\‘rm (}gn'r)
o Fall 2 = a2
52" 2- i | X |&, (faa)
A 4n Tk, .
I Rkt b1 | I OO B S S
|9 1-3Tk2 kna —m r ! -

= kL (1-Tk2)

where z € [-1,0], k,r >> m for sufficiently large n. Use Root Test,

| 4Tk,
T 4k [ £1] + | 42Tt ba |* jand w
lim —@,(r, 2)] £ lim , — x (—) xe~w(r=a)
n—00 0z n—oo 9 1-3Tk2 a — ;cl 7
‘ T (1—TkZ) "
Look at the following:
1).
E
[k (1711 + | U [k A+ | |
- =exp—In —— -
1-3Tk2 n 1—-3Tk2
=7 k. (1-TkZ) 2T kL (1-Tk2)
and that
| [k 1IN+ |
lim —1In .
n—so N ‘2 _ 1312
Ren{1—TkZ)
1 ArTpk, 1 —3Tk2
= sy {hl ('4’“” I+ =7 ) B Ty
1
= lim — [ln (|4.l.?11 I+ O (k;l)) —In ‘2 -0 (k;l)”
n—oo 1 -
1
= lim — [In(|4k. || flI]) = In|2]] = 0,
n—0C T

thus |
|4k, | f1I] + 111{__11% A 0
lim = =0 =1. (2.42)
n—oo 9 _ 173Tk.-;‘ ‘
b (1-Tk%)
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ii). Follow the results from (2.37) to (2.39) and (2.42),

<1lx1lx1lxe ™ <1,

’ ‘dﬂpn(f z)

By Root Test, the series Z @, (r, ) converges uniformly for = € [—1,0] and

n=0 a"
T >0,

IT1). Consider the uniform convergence of >~ o f,(2)7,(r) :

(2.43)

d ,
o] = L)
cos ky, cos(k, (1+42))
‘*T'_“.-I-\—kg— ]_ = Tf»z) /
= |—4rw . X |— f(&)cos(ky (1+&)dE+Tu
[2+%sm2an} [ (ﬂoqﬂn
E.K! (k
v n \‘Ht (’]\dn?)
K7, (kna)
cus ky, 9 5
T—TkZ 1 — TkZ b dCl (kyr)
< |4 1—Tk2 % n | — T % m \'n
=7 {2 i Ml |y Al § A
y cos ky
|4~ 4T (lmg) B )
g et K7, (kaa)
Since
Ky (kpr) ~ 2;?"8”‘" and
I m
koKL, (hnr) ~ i -1
m ( ) Qk‘ﬂ‘r"L (}gn,r )

for sufficiently large n, r > a. Hence

r— = 3
Yulr) ~ kn ( ’fﬁ) () e, (2.44)
a— r” i




and

417"[‘.:

‘ » 71 = (2228 ) | (haics, ()

R 2 AU =

()? 2 — % I m (kﬂa}

b I+ | | | | (- 2 s
— 'Ry ko Ay F
- 1-3Tk2 —m (_> e ITH245)
‘2 = T (1-ThZ) R 7

where = € [-1,0], k,r >> m for sufficiently large n. Use Root Test,

4Tk, " _ 1
‘4}»n||f“|+ ]‘r-r-ff!‘g‘ % T — ;EJ'T (E); n ..
o _ _1=3Tk _ s
A‘-M(I—Tkﬁ) "

0.

and then

e : 3
(—fn) (2) =exp—lIn ME)E +O(.”;l)} ,
o— r r
S0
1 ayz -
lim —1In (—) + 0 (kn ) =0,
n—co 1 T

= lim

n—0o0

=el =1, (2.46)

m K
.
a S r

ii). Follow the results from (2.39), (2.44) and (2.48),

<1x1x1xe ™o <1,
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00, ) )
By Root Test, the series ane %upn(r, z) converges uniformly on » € [—1,0] and

rFa.

a9

Thus from the result in I)., £ 3

may be taken in to the series ¢(r, z) =

Z:;U fu(2)7,(r); results in II). and III). ensure that

P = . 1
()?t = qu(:)hfn(r)?

n=>0
O =~
55 = Z fn.(':)ﬁ}n(?'); alld
& n=>0
&P i
. Jn(2)7n(r)
Az -

on {(r.z)] (r,z) € [=1,0] x (a,00)}. Therefore £, and L, can also be taken in

to the sum Y > o f,(2)7,(r). Now we completely proved the Theorem.

3. Conclusion

By using expansion theorem and a special assumption, we find that in order to
construct the solution, the interchangeability between some differential operators
and specific series should be verified first. Therefore the plausibility of proposing
the theorem is asserted. We do not get into detail of solution finding process
because that involves other technical details and is irrelevant to our proof. Con-
struction of solution as well as possible application of the model shall be discussed

in another paper.
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Appendix. Formulations

We shall consider capillary—gravity waves generated by a cylindrical wave-
maker in an incompressible, inviscid fluid, and assume that the fluid motion is
irrotational. Let us use a cylindrical coordinate system in which the z-axis is
pointing vertically upwards, so that 2z = 0, » > «a is the undisturbed state of the
fluid. The fluid region is exterior (r > a) to the wave maker. At equilibrium it
is of uniform depth h. We may describe the fluid motion by a velocity potential

O(r, ¢, . t). The linearized equations governing the fluid motion are the following:
Vid =10 in the fluid region V;

(Dz — Zﬁ:
, on z=0,r>aq
o, +gZ =TViZ

where

V={(rz)|r>a>0,and 2z € (—h,0)};
V3 and V3 denote three dimensional and two-dimensional cylindrical Laplacians
respectively, g is the gravitational constant, pT is the surface tension constant, p

is the fluid density, ¢ € [0,27], and Z represents free surface of the fluid.
D, = f(:)ei(”fimﬁ) on r=a

where w is the angular frequency, m is the azimuthal number (i.e. the waves are
generated asynnmnetrically,) and f is an arbitrary smooth function. The bottom
condition is given by

b, — 0 on z— —1.
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A radiation condition is prescribed as follows:

D —s Coen’mzH(l)(ko_r)ei(wltmﬁ) as r — o0,

m

where kg and ik, n = 1,2, 3,...; kg > 0, by < ks < kg < ... are the roots of
equation

Aa) = a(Ta® + 1) cosh o — w? sinh o = 0,

H! )(-) is the Hankel’s function of the first kind with order m, and Cy is an
unknown constant.
The edge condition prescribed for the problem here is Hocking’s edge con-

dition, and is given by
1
Zi=AZ,, | A= 5 at pi=ha, =),

where A is a constant determined by experiment. Since the above equations are

all linear, we may time-reduce and ¢—reduce the problem and assume

Glmlaml] = @l :-)Ci(wt:l:m(})’

AN .
Z(r,0t) = g(T)cn(wr.ima)_

A
s a .. F i 1 . .
Now we measure r, z, Z and ¢ in units of 1, ¢ in units of g72; ®, ¢, T and A in units
i & . o L S i ; G
of g; w and [ in units of g2. Then writing down the equations for the linearized
and time-and-6- reduced problem, we obtain the governing equations from (2.1)

to (2.6).
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