t-Tone Chromatic Numbers of Cycles of Length
Less than Eight

Jun-Jie Pan *1 Jing-Ru Wu!

Abstract

A t-tone k-coloring of a graph G = (V(G), E(G)) is a function f: V(G) —
(¥1) such that |f(u) N f(v)] < d(u,v) for all distinct vertices u and v. The
t-tone chromatic number of G, denoted 7¢(G), is the smallest positive integer k
such that G has a t-tone k-coloring. For t = 1, m(G) = x(G), is the chromatic
number of a graph G.

For t = 1, the chromatic numbers of cycles are well-known. For ¢t = 2, Bickle
and Phillips [1] gave the 2-tone chromatic numbers of cycles. In this paper, we
determine t-tone chromatic numbers of cycles of order n for 3 < n < 7 and

t > 3.
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1 Introduction

Let [k] = {1,2,...,k}, t be a natural number, and ({f]) denote the family of ¢-subsets
of [k]. The notation d(u, v) represents the distance between two vertices u and v of a
graph G. A t-tone k-coloring of a graph G = (V(Q), E(G)) is a function f: V(G) —
(U;}) such that |f(u) N f(v)|] < d(u,v) for all distinct vertices v and v. The t-tone
chromatic number of G, denoted 74((), is the smallest positive integer k such that G
has a t-tone k-coloring. For t = 1, 74(G) = x(G), is the chromatic number of a graph

GG. The motivation of this topic is mentioned in the paper [2].
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A cycle C, of n vertices is a graph with vertex set V(C,) = {v; : i € [n]}
and edge set E(C,) = {viviy1 : 1 € [n — 1]} U {vpv1}. In this paper, we consider
this problem on cycles. For ¢ = 1, the chromatic numbers of cycles are well-known.
For t = 2, Bickle and Phillips [1] gave the 2-tone chromatic numbers of cycles. We

determine t-tone chromatic numbers of cycles of order n for 3 <n < 7 and ¢t > 3.

2 Previous Results

We list some tools that help us build our results in this section.
Proposition 1. [1] 7(K,) = tn for natural numbers t and n.

Proposition 2.
if n 1s even,
otherwise.

ne)=1{ 3

Proposition 3. [1]
_ [ 6 ifn=347,
79(Cn) = { 5 otherwise.

Proposition 4. [1] Let P, be the path of order n. Then

(Py) = gma}{ {O,t - (;) } |

Proposition 5. [1] If H is a subgraph of a graph G, then 7.(H) < 7(G).

3 Main Results

Tn this section, we will determine ¢-tone chromatic numbers of cycles of order n for
3<n<T7andt>3. First of all, we get a natural lower bound for t-tone chromatic

numbers of cycles in the following proposition.

Proposition 6.

m—1 ;
el ) Z max {O,t - (;) } for m < n.
i=0
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m—1

Proof. By Proposition 4, 7,(Py) = >.1" max {0, — (})}. Since P, is a subgraph

of C,, for m < n, by Proposition 5 this proposition holds. O

Next, we get lower bounds for t-tone chromatic numbers of cycles C,, with small

n and sufficiently large ¢ by using the Inclusion-Exclusion Principle in Lemma 1.

Lemma 1. For every natural number t,

4 -2  ifn=4,
9t — 5 ifm=5,
6t—12 afn==§,
=21 4fn=T.

Tt(cn) 2

Proof. Suppose that V(C,) = {v; : i € [n]} and f is a t-tone k-coloring of C, for
4 <n <7 Then d(v;,v;) <3 fori# j Let f(v;) = A for all i € [n]. Then by the
Pigeonhole Principle and | f(u) N f(v)| < d(u,v) = 1 for all distinct adjacent vertices

u and v, [MierA;| = 0 for [I| > 4. Thus by the Inclusion-Exclusion Principle, we have

T
k= A
]
n
= 1A= Y An4l- Y (A4
=1 1<i<jsn 1<i<jsn
d(uvuj;):l d(“is”j);2
- X AN+ Y (M N4
d](f:ij)in? 0#£IC[n), 1|23 iel
>at— > [ANAl— Y JAin4
1<igj<n 1<i<ji<n
d(vjvg)=2 d(v;,vj)=3

Let by = isicicn [A;MA;]. Forn=4,by<2and b3 =0. Forn=25, b, <5

and b3 = 0. Forn =6, by < 6and b3 < 3-2 Forn=7by < 7and by <7-2

Therefore, this lemma holds. O

Recall that the Wiener indez of a connected graph G = (V, E), written W(G) =

Y uvey A(u,v), is the sum of the distances of all pairs of vertices of G.



Lemma 2. Ift > [n®/4] —n + 1, then 1,(C,) < tn — W(Cn) + (3).

Proof. Observe that for every vertex v € V(C,), Douzold(u,v) = 1] = |n2/4] —
n + 1. It suffices to construct a t-tone tn — W(C,) + (g)—coloring f of C,. Since
t > |n®/4] —n+1, the set [tn — W(G) + (3)] is arbitrarily partitioned into n disjoint
subsets of specific sizes. Indeed, let [tn — W(C,) + ()] = UL, Li, where |I,| = t,
|Ii| =t — Z;;ll [d(vj,v;) — 1] for 2 <4 < n, and I; N Ij; = 0 for i # j. Second, since

t>[n*/4] —n+1, [l = ¢, and | f) =8 -1

j:l[d(?fj,%) —1] for 2 < ¢ < n, we can

find n — 4 arbitrarily disjoint subsets of Ly for @ € [n]. That is, let I,, D szl w5 I
with [I;;| = d(v;,v;) — 1 and I; N Iy = 0 for j # k. Third, define f(v;) = U;zl Ly
for ¢ € [n]. Then |f(v1)] =t and | f(vi)| = Si_, 1] = Yimld(vs, ) = 1] + | Ia] = ¢
for 2 <4 < n. Fori < j, since I Nl =0 for k € [i — 1] and I; D Lij, we
have |f(v:) N f(v))] = |I;] = d(vi,vj) — 1 < d(v;,v;). Therefore, we have a t-tone

tn —W(C,) + (3)-coloring of C,,. O
For the above lemma, we have a stronger result for a connected graph in [3].

From now on, we will give ¢-tone chromatic numbers of cycles of order n for

3 <n<7in the following theorems.
Theorem 1. 7,(Cy) = 4t — 2 for every natural number t.

Proof. Since W(Cy) = 8, by Lemma 2, 7:(Cy) < 4t — 2. Together with Lemma 1, this

theorem holds. OJ

Theorem 2.
|3 ift=1,
T*(Cf’)‘{ 5t—5 ift>2.

Proof. Since W(C5) = 15, by Lemma 2, 7(Cy) < 5t — 5 for t > 2. Together with

Lemma 1 and Proposition 2, this theorem holds. ]



Proposition 7. 73(Cg) = 8.

Proof. By Proposition 6, 8 = 73(P;) < 75(Cs)-
On the other hand, let the function f : V(Cg) — [8] with f(vi) = {1,2,3}, f(v2) =
{4,5,6}, f(us) = {1,7,8}, f(va) = {2,3,4}, f(vs) = {1,5,6}, f(ve) = {4,7,8}. Then

f is a 3-tone 8-coloring of Cy implies that 73(Cs) < 8. Hence,m3(Cs) = 8 O
Theorem 3.
2 ift =1,
)5 ift=2,
n(Co) =1 g ift =3,

6t —12 ift> 4.
Proof. Since W (Cs) = 27, by Lemma 2, 7,(Cs) < 6t — 12 for t > 4. By Lemma 1,

7,(Cg) = 6t — 12 for t > 4. Together with Propositions 2-3 and Proposition 7, this

theorem holds. O

Lemma 3. Suppose that f is a t-tone (4t — 4)-coloring of C7 fort > 3, then | f(u) N
f(w)| = 2 for all d(u,v) =3 and |f(u) N f(v)] =1 for all d(u,v) = 2.

Proof. Let vy, vs € V(C4) with d(vp, v3) = 3. Then wouivevs be a path Py. Sine f is a
t-tone (4t—4)-coloring and 74(P;) = 4t—4, 4t—4 = |U2_ f(v;)|. Thus by the Inclusion-
Exclusion Principle, 4t — 4 = | UL, f(v;)| = 4t — | f(vo) N fv2)| — | f(vo) N flus)| =
| f(v1) N f(vs)] implies that | f(vo) N f(vs)| = 2,[f(vo) N flwa)] =1, |f (o) N f(va)] = 1
because |f(vo) N f(va)| < 1, |f(v1) N f(us)| <1, and | f(vo) N f(vs)| < 2. Hence, this

lemma holds. O
Proposition 8. 73(C7) = 9.

Proof. Suppose that C7 has a 3-tone 8-coloring. Then by Lemma 3, we can assume
that f(vi) = {1,2,3}, f(v2) = {4,5,6}, f(vs) = {1,7,8}, and f(v4) = 12,84}

Since d(vi,vs) = 3 and d(vy,vs) = 3, by Lemma 3 |f(v1) N f(vs)| = 2 and
|£(v2) N f(ws)] = 2. Since | f(v1) N f(ve)] =0, [f(v1) N flvs)] + [ F(v2) N flvs)] = 4 <
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|f(vs)| = 3, a contradiction. Thus C7 does not have a 3-tone 8-coloring. Therefore
73(C7) 2 9.

On the other hand, let f(v)) = {1,2,3}, f(v2) = {4,5,6}, f(vs) = {1,7,8},
f(vg) = {3,4,9}, f(vs) = {1,5,6}, f(vs) = {2,4,7}, and f(vr) = {5,8,9}. Then f is
3-tone 9-coloring implies that 73(C7) < 9. Hence 73(C7) = 9. O

Proposition 9. 74(C7) = 13.

Proof. Suppose that C; has a 4-tone 12-coloring. Then by Lemma 3, we can as-
sume that f(v,) = {1,2,3,4}, f(v2) = {5,6,7,8}, f(v3) = {1,9,10,11}, and f(vs) =
{2,3,5,12}.

Since 5 € f(v4) and d(va,vs) = 3, by Lemma 3, assume that {6,7} C f(vs).
Since {2,3} € f(vs) and d(vy,vs) = 3, by Lemma 3, f(vs) = {1,4,6,7}.

Since {6,7} C f(vs) and d(va,v6) = 3, {5,8} C f(vg). Since 1 € f(vs) and
d(vs,v6) = 3, we can assume that f(vs) = {5,8,9,10}.

Since {9,10} C f(vs) and d(vs,v7) = 3, {1,11} € f(v7). Since d(vi,vr) = 1,
1 ¢ f(vr), a contradiction. Thus, 74(C7) > 13.

On the other hand, let f(v;) = {1,2,3,4}, f(v2) = {5,6,7,8}, f(va) = {1,9,10,11},
Flvg) = {2,3,5,12}, f(vs) = {1,4,6,7}, f(us) = {5,8,9,10}, and f(v7) = {6,11,12,13}.
Then f is 4-tone 13-coloring implies that 73(C7) < 13. Hence 74(C7) = 13. O

Proposition 10. 75(C;) = 17.

Proof. Suppose that C; has a 5-tone 16-coloring. Then by Lemma 3, we am assume
that f(v) = {1,2,3,4,5}, f(v2) = {6,7,8,9,10}, f(vs) = {1,11,12,13, 14}, and
Flua) = {2,3,6,15,16}.

Suppose that 1 € f(vs). Since d(vs,v1) = 3, and {2,3} C f(v4), by Lemma 3,
assume that {1,4} C f(vs). Since 6 € f(vq) and f(v2) = {6,7,8,9, 10}, by Lemma 3,



assume that {7,8} C f(vs) and so f(vs) = {1,4,7,8,a} for some a € [16]. Together
with d(vs,v3) = 2 and d(vs, 1) = 1, by Lemma 3, we have a ¢ [16], a contradiction.

Now, 1 & f(uvs). Since d(vs,v1) = 3 and d(vs,v4) = 1, by Lemma 3, {4.5FC
flus). Since 6 € f(v2), by Lemma 3, assume that {7, 8} C f(vs). Since d(vs,v3) = 1,
by Lemma 3, assume that f(vs) = {4,5,7,8,11}.

Suppose that 6 € f(vg). Since d(vs,v2) = 3, and d(vs,v5) = 1, by Lemma
3, assume that {6,9} C f(vg). Since d(ve,v3) = 3 and d(vg,vs) = 1, by Lemma
3, assume that f(ve) = {6,9,1,12,b} or {6,9, 12,13,b} for some b € [16]. Since
6 € f(vs), b & [16], a contradiction. Thus, 6 ¢ f(vs). Since d(vg,v2) = 3, and
d(ve,vs) = 1, by Lemma 3, we can assume that {9,10} C f(ve).

Since d(vs,v3) = 3 and d(vs,v5) = 1, by Lemma 3, assume that {1,12} C f(ug)
or {12,13} C f(vg). For {1, 12} € f(vg), since d(vg,v1) = 2 and d(vg,v4) = 2, by
Lemma 3, assume that f(vs) = {1,9, 10,12, 15}. Thus, we have two cases for f(vs).

Case 1. f(vg) = {1,9,10,12, 15}. In this case, since d(v7,v6) = 1, and d(vy, v3) =
3, by Lemma 3, assume that f(v;) = {11,13, ¢, d, e}or {13,14,c,d, e} for some ¢, d, e €
[16]. Suppose that f(v;) = {11,13,¢,d,e}. Since d(v;,v;) = 1 and d(vr,v5) = 2, by
Lemma 3, we have {c,d,e} C {6,16}, a contradiction. For fvr) = {18,14, ¢, d, e},
since d(vr,v4) = 3, by Lemma 3, f(v;) = {13,14,6,16,e}. Since d(v7,v3) = 2 and
d(vr,vs) = 2, by Lemma 3, we have e ¢ [16], a contradiction.

Case 2. {9,10,12,13} C f(vg). In this case, since d(vy,v; = 1), f(vs,vg) =
1, and d(vr,v3) = 3, by Lemma 3, f(v;) = {11,14,¢,d, €} for some ¢, d,e € [16].
Since 11 € f(vs), by Lemma 3, {c,d,e} = {6,15,16} contrary to the inequality
3 =[f(vr) N f(va)| < d(v7,vs) = 2. Therefore, 75(C;) > 17.

On the other hand, let the function f : V(C;) — [17] with f(v) = {1,2,3,4,5}, f(va) =
{6,7,8,9,10}, f(vs) = {1,11,12,13,14}, f(vs) = {2,3,6,15,16}, f(vs) = {4,5,7,8, 11}, f(vs) =
{2,9,10,12,13}, and f(v7) = {11, 14, 15, 186, 17}. Then f is a 5-tone 17-coloring of Cy
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implies that 75(C7) < 17. Hence,5(C7) = 17. O
Theorem 4.
(3 ift=1,
6 ift =2,
9 if =8,
m(Cr) = j 13 th )
17 ift =5,
| 7t—-21 ift>6.

Proof. Since W(C7) = 42, by Lemma 2, 7(C7) < 7t — 21 for t > 6. Together with

Lemma 1 and Propositions 3, 8-10, this theorem holds. O
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