t-Tone Chromatic Numbers of Cycles of Length Less than Eight

Jun-Jie Pan *† Jing-Ru Wu ‡

Abstract

A t-tone k-coloring of a graph G = (V(G), E(G)) is a function $f : V(G) \to {k \choose t}$ such that $|f(u) \cap f(v)| < d(u, v)$ for all distinct vertices u and v. The t-tone chromatic number of G, denoted $\tau_t(G)$, is the smallest positive integer k such that G has a t-tone k-coloring. For t = 1, $\tau_1(G) = \chi(G)$, is the chromatic number of a graph G.

For t=1, the chromatic numbers of cycles are well-known. For t=2, Bickle and Phillips [1] gave the 2-tone chromatic numbers of cycles. In this paper, we determine t-tone chromatic numbers of cycles of order n for $3 \le n \le 7$ and $t \ge 3$.

Keywords. *t*-tone chromatic number, cycle.

1 Introduction

Let $[k] = \{1, 2, ..., k\}$, t be a natural number, and $\binom{[k]}{t}$ denote the family of t-subsets of [k]. The notation d(u, v) represents the distance between two vertices u and v of a graph G. A t-tone k-coloring of a graph G = (V(G), E(G)) is a function $f : V(G) \to \binom{[k]}{t}$ such that $|f(u) \cap f(v)| < d(u, v)$ for all distinct vertices u and v. The t-tone chromatic number of G, denoted $\tau_t(G)$, is the smallest positive integer k such that G has a t-tone k-coloring. For t = 1, $\tau_1(G) = \chi(G)$, is the chromatic number of a graph G. The motivation of this topic is mentioned in the paper [2].

^{*}Department of Mathematics, Fu Jen Catholic University, New Taipei City 24205, Taiwan.

[†]E-mail: jackpan@math.fju.edu.tw.

 $^{^{\}ddagger} \mbox{Department}$ of Mathematics, Fu
 Jen Catholic University, New Taipei City 24205, Taiwan.

A cycle C_n of n vertices is a graph with vertex set $V(C_n) = \{v_i : i \in [n]\}$ and edge set $E(C_n) = \{v_i v_{i+1} : i \in [n-1]\} \cup \{v_n v_1\}$. In this paper, we consider this problem on cycles. For t = 1, the chromatic numbers of cycles are well-known. For t = 2, Bickle and Phillips [1] gave the 2-tone chromatic numbers of cycles. We determine t-tone chromatic numbers of cycles of order n for $1 \le n$ and $1 \le n$.

2 Previous Results

We list some tools that help us build our results in this section.

Proposition 1. [1] $\tau_t(K_n) = tn$ for natural numbers t and n.

Proposition 2.

$$\tau_1(C_n) = \begin{cases} 2 & \text{if } n \text{ is even,} \\ 3 & \text{otherwise.} \end{cases}$$

Proposition 3. [1]

$$\tau_2(C_n) = \begin{cases} 6 & if \ n = 3, 4, 7, \\ 5 & otherwise. \end{cases}$$

Proposition 4. [1] Let P_n be the path of order n. Then

$$\tau_t(P_n) = \sum_{i=0}^{n-1} \max\left\{0, t - \binom{i}{2}\right\}.$$

Proposition 5. [1] If H is a subgraph of a graph G, then $\tau_t(H) \leq \tau_t(G)$.

3 Main Results

In this section, we will determine t-tone chromatic numbers of cycles of order n for $3 \le n \le 7$ and $t \ge 3$. First of all, we get a natural lower bound for t-tone chromatic numbers of cycles in the following proposition.

Proposition 6.

$$\tau_t(C_n) \ge \sum_{i=0}^{m-1} \max\left\{0, t - {i \choose 2}\right\} \text{ for } m \le n.$$

Proof. By Proposition 4, $\tau_t(P_m) = \sum_{i=0}^{m-1} \max \{0, t - {i \choose 2}\}$. Since P_m is a subgraph of C_n for $m \le n$, by Proposition 5 this proposition holds.

Next, we get lower bounds for t-tone chromatic numbers of cycles C_n with small n and sufficiently large t by using the Inclusion-Exclusion Principle in Lemma 1.

Lemma 1. For every natural number t,

$$\tau_t(C_n) \ge \begin{cases} 4t - 2 & \text{if } n = 4, \\ 5t - 5 & \text{if } n = 5, \\ 6t - 12 & \text{if } n = 6, \\ 7t - 21 & \text{if } n = 7. \end{cases}$$

Proof. Suppose that $V(C_n) = \{v_i : i \in [n]\}$ and f is a t-tone k-coloring of C_n for $1 \le n \le 7$. Then $1 \le n \le 7$. Then by the Pigeonhole Principle and $1 \le n \le 7$. Thus by the Inclusion-Exclusion Principle, we have

$$k = \left| \bigcup_{i=1}^{n} A_{i} \right|$$

$$= \sum_{i=1}^{n} |A_{i}| - \sum_{\substack{1 \leq i < j \leq n \\ d(v_{i}, v_{j}) = 1}} |A_{i} \cap A_{j}| - \sum_{\substack{1 \leq i < j \leq n \\ d(v_{i}, v_{j}) = 2}} |A_{i} \cap A_{j}|$$

$$- \sum_{\substack{1 \leq i < j \leq n \\ d(v_{i}, v_{j}) = 3}} |A_{i} \cap A_{j}| + \sum_{\substack{\emptyset \neq I \subseteq [n], \ |I| \geq 3}} (-1)^{|I|+1} \left| \bigcap_{i \in I} A_{i} \right|$$

$$\geq nt - \sum_{\substack{1 \leq i < j \leq n \\ d(v_{i}, v_{j}) = 2}} |A_{i} \cap A_{j}| - \sum_{\substack{1 \leq i < j \leq n \\ d(v_{i}, v_{j}) = 3}} |A_{i} \cap A_{j}|$$

Let $b_m = \sum_{\substack{1 \le i < j \le n \\ d(v_i, v_j) = m}} |A_i \cap A_j|$. For n = 4, $b_2 \le 2$ and $b_3 = 0$. For n = 5, $b_2 \le 5$ and $b_3 = 0$. For n = 6, $b_2 \le 6$ and $b_3 \le 3 \cdot 2$. For n = 7, $b_2 \le 7$ and $b_3 \le 7 \cdot 2$. Therefore, this lemma holds.

Recall that the Wiener index of a connected graph G = (V, E), written $W(G) = \sum_{u,v \in V} d(u,v)$, is the sum of the distances of all pairs of vertices of G.

Lemma 2. If $t \geq \lfloor n^2/4 \rfloor - n + 1$, then $\tau_t(C_n) \leq tn - W(C_n) + \binom{n}{2}$.

Proof. Observe that for every vertex $v \in V(C_n)$, $\sum_{u \neq v} [d(u, v) - 1] = \lfloor n^2/4 \rfloor - n + 1$. It suffices to construct a t-tone $tn - W(C_n) + \binom{n}{2}$ -coloring f of C_n . Since $t \geq \lfloor n^2/4 \rfloor - n + 1$, the set $[tn - W(G) + \binom{n}{2}]$ is arbitrarily partitioned into n disjoint subsets of specific sizes. Indeed, let $[tn - W(C_n) + \binom{n}{2}] = \bigcup_{i=1}^n I_{ii}$, where $|I_{11}| = t$, $|I_{ii}| = t - \sum_{j=1}^{i-1} [d(v_j, v_i) - 1]$ for $2 \leq i \leq n$, and $I_{ii} \cap I_{jj} = \emptyset$ for $i \neq j$. Second, since $t \geq \lfloor n^2/4 \rfloor - n + 1$, $|I_{11}| = t$, and $|I_{ii}| = t - \sum_{j=1}^{i-1} [d(v_j, v_i) - 1]$ for $2 \leq i \leq n$, we can find n - i arbitrarily disjoint subsets of I_{ii} for $i \in [n]$. That is, let $I_{ii} \supseteq \bigcup_{j=i+1}^n I_{ij}$ with $|I_{ij}| = d(v_i, v_j) - 1$ and $I_{ij} \cap I_{ik} = \emptyset$ for $j \neq k$. Third, define $f(v_i) = \bigcup_{j=1}^i I_{ji}$ for $i \in [n]$. Then $|f(v_1)| = t$ and $|f(v_i)| = \sum_{j=1}^i |I_{ji}| = \sum_{j=1}^{i-1} [d(v_j, v_i) - 1] + |I_{ii}| = t$ for $2 \leq i \leq n$. For i < j, since $I_{ki} \cap I_{kj} = \emptyset$ for $k \in [i-1]$ and $I_{ii} \supseteq I_{ij}$, we have $|f(v_i) \cap f(v_j)| = |I_{ij}| = d(v_i, v_j) - 1 < d(v_i, v_j)$. Therefore, we have a t-tone $tn - W(C_n) + \binom{n}{2}$ -coloring of C_n .

For the above lemma, we have a stronger result for a connected graph in [3].

From now on, we will give t-tone chromatic numbers of cycles of order n for $3 \le n \le 7$ in the following theorems.

Theorem 1. $\tau_t(C_4) = 4t - 2$ for every natural number t.

Proof. Since $W(C_4) = 8$, by Lemma 2, $\tau_t(C_4) \le 4t - 2$. Together with Lemma 1, this theorem holds.

Theorem 2.

$$\tau_t(C_5) = \begin{cases} 3 & \text{if } t = 1, \\ 5t - 5 & \text{if } t \ge 2. \end{cases}$$

Proof. Since $W(C_5) = 15$, by Lemma 2, $\tau_t(C_4) \le 5t - 5$ for $t \ge 2$. Together with Lemma 1 and Proposition 2, this theorem holds.

Proposition 7. $\tau_3(C_6) = 8$.

Proof. By Proposition 6, $8 = \tau_3(P_3) \le \tau_3(C_6)$.

On the other hand, let the function $f: V(C_6) \to [8]$ with $f(v_1) = \{1, 2, 3\}, f(v_2) = \{4, 5, 6\}, f(v_3) = \{1, 7, 8\}, f(v_4) = \{2, 3, 4\}, f(v_5) = \{1, 5, 6\}, f(v_6) = \{4, 7, 8\}.$ Then f is a 3-tone 8-coloring of C_6 implies that $\tau_3(C_6) \le 8$. Hence, $\tau_3(C_6) = 8$

Theorem 3.

$$\tau_t(C_6) = \begin{cases} 2 & \text{if } t = 1, \\ 5 & \text{if } t = 2, \\ 8 & \text{if } t = 3, \\ 6t - 12 & \text{if } t \ge 4. \end{cases}$$

Proof. Since $W(C_6) = 27$, by Lemma 2, $\tau_t(C_6) \le 6t - 12$ for $t \ge 4$. By Lemma 1, $\tau_t(C_6) = 6t - 12$ for $t \ge 4$. Together with Propositions 2-3 and Proposition 7, this theorem holds.

Lemma 3. Suppose that f is a t-tone (4t-4)-coloring of C_7 for $t \ge 3$, then $|f(u) \cap f(v)| = 2$ for all d(u,v) = 3 and $|f(u) \cap f(v)| = 1$ for all d(u,v) = 2.

Proof. Let $v_0, v_3 \in V(C_7)$ with $d(v_0, v_3) = 3$. Then $v_0v_1v_2v_3$ be a path P_4 . Sine f is a t-tone (4t-4)-coloring and $\tau_4(P_4) = 4t-4$, $4t-4 = |\bigcup_{i=0}^3 f(v_i)|$. Thus by the Inclusion-Exclusion Principle, $4t-4 = |\bigcup_{i=0}^3 f(v_i)| = 4t - |f(v_0) \cap f(v_2)| - |f(v_0) \cap f(v_3)| - |f(v_1) \cap f(v_3)|$ implies that $|f(v_0) \cap f(v_3)| = 2$, $|f(v_0) \cap f(v_2)| = 1$, $|f(v_1) \cap f(v_2)| = 1$ because $|f(v_0) \cap f(v_2)| \le 1$, $|f(v_1) \cap f(v_3)| \le 1$, and $|f(v_0) \cap f(v_3)| \le 2$. Hence, this lemma holds.

Proposition 8. $\tau_3(C_7) = 9$.

Proof. Suppose that C_7 has a 3-tone 8-coloring. Then by Lemma 3, we can assume that $f(v_1) = \{1, 2, 3\}, f(v_2) = \{4, 5, 6\}, f(v_3) = \{1, 7, 8\}, \text{ and } f(v_4) = \{2, 3, 4\}.$

Since $d(v_1, v_5) = 3$ and $d(v_2, v_5) = 3$, by Lemma 3 $|f(v_1) \cap f(v_5)| = 2$ and $|f(v_2) \cap f(v_5)| = 2$. Since $|f(v_1) \cap f(v_2)| = 0$, $|f(v_1) \cap f(v_5)| + |f(v_2) \cap f(v_5)| = 4 \le 1$

 $|f(v_5)|=3$, a contradiction. Thus C_7 does not have a 3-tone 8-coloring. Therefore $\tau_3(C_7)\geq 9$.

On the other hand, let $f(v_1) = \{1, 2, 3\}, f(v_2) = \{4, 5, 6\}, f(v_3) = \{1, 7, 8\},$ $f(v_4) = \{3, 4, 9\}, f(v_5) = \{1, 5, 6\}, f(v_6) = \{2, 4, 7\}, \text{ and } f(v_7) = \{5, 8, 9\}.$ Then f is 3-tone 9-coloring implies that $\tau_3(C_7) \leq 9$. Hence $\tau_3(C_7) = 9$.

Proposition 9. $\tau_4(C_7) = 13$.

Proof. Suppose that C_7 has a 4-tone 12-coloring. Then by Lemma 3, we can assume that $f(v_1) = \{1, 2, 3, 4\}, f(v_2) = \{5, 6, 7, 8\}, f(v_3) = \{1, 9, 10, 11\}, \text{ and } f(v_4) = \{2, 3, 5, 12\}.$

Since $5 \in f(v_4)$ and $d(v_2, v_5) = 3$, by Lemma 3, assume that $\{6, 7\} \subseteq f(v_5)$. Since $\{2, 3\} \subseteq f(v_4)$ and $d(v_1, v_5) = 3$, by Lemma 3, $f(v_5) = \{1, 4, 6, 7\}$.

Since $\{6,7\} \subseteq f(v_5)$ and $d(v_2,v_6)=3$, $\{5,8\} \subseteq f(v_6)$. Since $1 \in f(v_5)$ and $d(v_3,v_6)=3$, we can assume that $f(v_6)=\{5,8,9,10\}$.

Since $\{9, 10\} \subseteq f(v_6)$ and $d(v_3, v_7) = 3$, $\{1, 11\} \subseteq f(v_7)$. Since $d(v_1, v_7) = 1$, $1 \notin f(v_7)$, a contradiction. Thus, $\tau_4(C_7) \ge 13$.

On the other hand, let $f(v_1) = \{1, 2, 3, 4\}, f(v_2) = \{5, 6, 7, 8\}, f(v_3) = \{1, 9, 10, 11\},$ $f(v_4) = \{2, 3, 5, 12\}, f(v_5) = \{1, 4, 6, 7\}, f(v_6) = \{5, 8, 9, 10\}, \text{ and } f(v_7) = \{6, 11, 12, 13\}.$ Then f is 4-tone 13-coloring implies that $\tau_3(C_7) \le 13$. Hence $\tau_4(C_7) = 13$.

Proposition 10. $\tau_5(C_7) = 17$.

Proof. Suppose that C_7 has a 5-tone 16-coloring. Then by Lemma 3, we am assume that $f(v_1) = \{1, 2, 3, 4, 5\}, f(v_2) = \{6, 7, 8, 9, 10\}, f(v_3) = \{1, 11, 12, 13, 14\},$ and $f(v_4) = \{2, 3, 6, 15, 16\}.$

Suppose that $1 \in f(v_5)$. Since $d(v_5, v_1) = 3$, and $\{2, 3\} \subseteq f(v_4)$, by Lemma 3, assume that $\{1, 4\} \subseteq f(v_5)$. Since $6 \in f(v_4)$ and $f(v_2) = \{6, 7, 8, 9, 10\}$, by Lemma 3,

assume that $\{7,8\} \subseteq f(v_5)$ and so $f(v_5) = \{1,4,7,8,a\}$ for some $a \in [16]$. Together with $d(v_5,v_3) = 2$ and $d(v_5,v_4) = 1$, by Lemma 3, we have $a \notin [16]$, a contradiction.

Now, $1 \not\in f(v_5)$. Since $d(v_5, v_1) = 3$ and $d(v_5, v_4) = 1$, by Lemma 3, $\{4, 5\} \subseteq f(v_5)$. Since $6 \in f(v_2)$, by Lemma 3, assume that $\{7, 8\} \subseteq f(v_5)$. Since $d(v_5, v_3) = 1$, by Lemma 3, assume that $f(v_5) = \{4, 5, 7, 8, 11\}$.

Suppose that $6 \in f(v_6)$. Since $d(v_6, v_2) = 3$, and $d(v_6, v_5) = 1$, by Lemma 3, assume that $\{6, 9\} \subseteq f(v_6)$. Since $d(v_6, v_3) = 3$ and $d(v_6, v_5) = 1$, by Lemma 3, assume that $f(v_6) = \{6, 9, 1, 12, b\}$ or $\{6, 9, 12, 13, b\}$ for some $b \in [16]$. Since $6 \in f(v_4)$, $b \notin [16]$, a contradiction. Thus, $6 \notin f(v_6)$. Since $d(v_6, v_2) = 3$, and $d(v_6, v_5) = 1$, by Lemma 3, we can assume that $\{9, 10\} \subseteq f(v_6)$.

Since $d(v_6, v_3) = 3$ and $d(v_6, v_5) = 1$, by Lemma 3, assume that $\{1, 12\} \subseteq f(v_6)$ or $\{12, 13\} \subseteq f(v_6)$. For $\{1, 12\} \subseteq f(v_6)$, since $d(v_6, v_1) = 2$ and $d(v_6, v_4) = 2$, by Lemma 3, assume that $f(v_6) = \{1, 9, 10, 12, 15\}$. Thus, we have two cases for $f(v_6)$.

Case 1. $f(v_6) = \{1, 9, 10, 12, 15\}$. In this case, since $d(v_7, v_6) = 1$, and $d(v_7, v_3) = 3$, by Lemma 3, assume that $f(v_7) = \{11, 13, c, d, e\}$ or $\{13, 14, c, d, e\}$ for some $c, d, e \in [16]$. Suppose that $f(v_7) = \{11, 13, c, d, e\}$. Since $d(v_7, v_1) = 1$ and $d(v_7, v_5) = 2$, by Lemma 3, we have $\{c, d, e\} \subseteq \{6, 16\}$, a contradiction. For $f(v_7) = \{13, 14, c, d, e\}$, since $d(v_7, v_4) = 3$, by Lemma 3, $f(v_7) = \{13, 14, 6, 16, e\}$. Since $d(v_7, v_2) = 2$ and $d(v_7, v_5) = 2$, by Lemma 3, we have $e \notin [16]$, a contradiction.

Case 2. $\{9, 10, 12, 13\} \subseteq f(v_6)$. In this case, since $d(v_7, v_1 = 1)$, $f(v_7, v_6) = 1$, and $d(v_7, v_3) = 3$, by Lemma 3, $f(v_7) = \{11, 14, c, d, e\}$ for some $c, d, e \in [16]$. Since $11 \in f(v_5)$, by Lemma 3, $\{c, d, e\} = \{6, 15, 16\}$ contrary to the inequality $3 = |f(v_7) \cap f(v_4)| < d(v_7, v_4) = 2$. Therefore, $\tau_5(C_7) \ge 17$.

On the other hand, let the function $f: V(C_7) \to [17]$ with $f(v_1) = \{1, 2, 3, 4, 5\}, f(v_2) = \{6, 7, 8, 9, 10\}, f(v_3) = \{1, 11, 12, 13, 14\}, f(v_4) = \{2, 3, 6, 15, 16\}, f(v_5) = \{4, 5, 7, 8, 11\}, f(v_6) = \{2, 9, 10, 12, 13\}, \text{ and } f(v_7) = \{11, 14, 15, 16, 17\}.$ Then f is a 5-tone 17-coloring of C_7

(

implies that $\tau_5(C_7) \leq 17$. Hence, $\tau_5(C_7) = 17$.

Theorem 4.

$$\tau_t(C_7) = \begin{cases}
3 & if \ t = 1, \\
6 & if \ t = 2, \\
9 & if \ t = 3, \\
13 & if \ t = 4, \\
17 & if \ t = 5, \\
7t - 21 & if \ t \ge 6.
\end{cases}$$

Proof. Since $W(C_7) = 42$, by Lemma 2, $\tau_t(C_7) \leq 7t - 21$ for $t \geq 6$. Together with Lemma 1 and Propositions 3, 8-10, this theorem holds.

References

- [1] A. Bickle, B. Phillips, t-Tone Coloring of Graphs, submitted (2011).
- [2] D. W. Cranston, J. Kim, and W. B. Kinnersley, New results in t-tone coloring of graphs, Electron. J. Combin. 20 (2013).
- [3] J.-J. Pan and C.-H. Tsai, A Lower Bound for the t-Tone Chromatic Number of a Connected Graph, submitted.
- [4] Jing-Ru Wu, The t-Tone Coloring of Cycles, Master's Thesis, Fu Jen Catholic University, New Taipei City, Taiwan (2015).