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On The Stabilizing Uncertain Lur’e-Postnikov
Systems by Variable Structure Control

Kou-CHENG Hsu
Department of Electronic Engineering
Fu-Jen Catholic University
Hsin-Chuang , Taipei 24205

ABSTRACT

This paper proposes a robust control method for the uncertain
Lur’e-Postnikov systems. It shows that, in the sliding mode, the
uncertain system with “nonlinear” input possesses the insensitivity
property to the uncertainties and disturbances just as those with
“linear” inputs do. Then a robust variable structure control law is
investigated such that the trajectories of uncertain Lur’e-Postnikov
system can be forced onto the sliding mode. The required
informations about uncertain dynamics in the system are that the
uncertainties are bounded by known functions and the property of the
“nonlinear” inputs. Furthermore, the sliding mode can be designed to

converge within a specified exponential speed.

Key Words: Lur’e-Postnikov system, variable structure control,

robust control, nonlinear input, series nonlinearity.

INTRODUCTION

The subject of robust control deals with the design of control systems subjected to
uncertainties and/or external disturbances. From the standpoint of design, the
uncertain system with linear inputs is more preferable than those with nonlinear inputs
because of its simplicity. Most of the robust control are devoted to the stabilization

problem of this kind of system™®. The assumption of linear inputs is that the system
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model is indeed linearizable. However, in control systems, there are many
nonlinearities in the control inputs and their effects can not be derived from linear
methods. Those nonlinearities inherently arise from practical actutors in system
realization, for example, saturation, quantization, backlash, deadzone, and so on.
The existence of input nonlinearities is a source of degradation or, even worse,
instability of system performance. Consequently, the problem of stability analysis of
control system design accounting for input nonlinearities has been a newly concerned
research area®"” (also see the numerous references cited therein). In this case, the

%9 can not be applied to stabilize the uncertain systems with nonlinear

existing works
inputs. In addition to the input nonlinearities, we have to face with plant uncertainties
originated from various sources, such as variation of plant parameters, inaccuracy from
identification, etc. Therefore, in spite of the existed works discussing about the robust
control, it is necessary to develop an effective robust control method for the uncertain
systems with nonlinear inputs, because the problem of stability analysis of robust
control systems with plant uncertainties is as important as that with input
nonlinearities.

Among the nonlinear input systems, Lur’e-Postnikov system is a well known
typical example. Many physical systems can be naturally interpreted as consisting of a
“linear part” and a “nonlinear part,” so that Lur’e-Postnikov system is, reasonably,
taken as a general system model™'”. Therefore, in this paper, an effective robust
control method is developed to guarantee the asymptotic stability of uncertain Lur’e-
Postnikov system.

For the robust control, variable structure control (VSC) is quite popularly utilized
since the variable structure control systems possess several attractive advantages in
sliding mode, for example, fast response, excellent transient performance, and
insensitivity to the variation of plant parameters or external disturbances™®"”.
However, most of the existing works about the VSC systems concentrated on the
systems with “linear” inputs"***.

To cope with the stabilization problem of uncertain Lur’e-Postnikov systems and

to make the controlled uncertain Lur'e-Postnikov systems be insensitive to uncertain

parameters and external disturbances, in this paper, a VSC method is developed for
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the purpose of stabilizing the uncertain Lur’e-Postnikov systems. To achieve such
goal, some properties of the Lur’e-Postnikov systems are firstly reviewed. Then a
robust variable structure controller is derived based on these properties. Furthermore,
the developed variable structure controller is modified to ensure the convergence speed
of sliding mode within a specified exponential speed. Finally, a numerical example is

illustrated to examine the validity of the proposed VSC controller.

SYSTEM DESCRIPTION AND PROBLEM FORMULATION

)

A general description of an uncertain Lur’e-Postnikov system is expressed in the
g P y P

form as
.f(t)=A:r(t)+B‘P(u)+Be(x,u,p,t) (1)

where £ () € R"is the state variable, u(z) € R™is the control input, p(t) € R*C
2 is the uncertain parameter, and e(¢) € R’is the external disturbance. A € R"*" is
the state matrix, B € R"™ is the input matrix, and ®:R"” — R" is a continuous
function such that @(0) = 0. It is also assumed that for any initial condition z(z,) =
zy € R"att = t,, parameter p € R, and control input u(z), there exists a unique
solution x (¢, x,, p,u ) satisfying equation (1).

Through this paper, two standard assumptions regarding system (1) are made:
Assumption 1: For the nominal part of the uncertain Lur’e-Postnikov system described
in eq. (1), matrix A and matrix B is a controllable pair.

Assumption 2: For the lumped uncertain terms of the system, ore(x,u,p,t), there

exist known non-negative constants £,, &, , and k, , such that

le(x,u,p,t) Il <k Nzl +kllul +k,

V(z,u,p,t) ER"XR"XR"XR (2)
In equation (1), the nonlinear inputs applied to the system satisfy the following
property -

ru'u < u'®(u) (3)

where r is a positive nonzero constant, ' is the transpose of u, and ® (u ) satisfies

@(0) =0.
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For the uncertain nonlinear system, the main theme of this paper is to derive an
effective VSC method such that the controlled uncertain Lur’e-Postnikov system is
stable and insensitive to the system uncertainties. In the following sections of this

denotes the usual Euclidean norm or the corresponding induced

article, the notation

matrix norm.
VARIABLE STRUCTURE CONTROL DESIGN

Usually the VSC design is a two-stage process. The first phase is to choose a set of
switching surfaces so that the original system, restricted to the intersection of the
switching surfaces (sliding modes), results in the desired behavior. The second phase
is to determine a switching control that is able to force the trajectory of the system
approaching to and staying on the sliding surface”**”. Hereby, the switching surfaces

are firstly defined as
S(t) = Cz(z) =0 (4)

where C € R™™ is a constant matrix which requires a nonzero determinant of the
product matrix (CB), that is, det(CB) 7 0. Because most of the existed studies
related to VSC"** do not discuss the system with nonlinear input, it is necessary to
examine if the property in the sliding mode, described in eq. (4), is valid for the

system with nonlinear input, shown in eq. (1). Once the sliding mode S(z) = 0is

obtained, it is always accompanied with the condition of S (¢) = 0. Hence, in the

sliding mode, the property of the system with nonlinear input can be inspected by
inserting eq. (1) into the derivative of eq. (4), or S= 0, to yield
S () = Cz (2)

= C[Az(z) + B®(u) + Be(x,u,p,t)]
=0 (5)

Therefore, the equivalent control @,, in the sliding mode S = 0 is given by
@, =- (CB)'C(Ax + Be) (6)

Remark 1: It is noted that the equivalent control @,, is only a mathematically derived
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tool for the purpose of analyzing a sliding motion rather than a real control law being
generated in practical systems. In fact, the equivalent control @, is only realizable
through a nonlinear controller if the system is absent from uncertainties, that is, all
uncertainties are zero in the nominal system. It is also noted that the equivalent control
generates an “ideal” sliding motion on the switching hyperplane while the real variable
structure controller generates a trajectory close to the ideal sliding motion around the
switching hyperplane.

Introducing equation (6) into eq. (1) produces the equivalent dynamic system

with nonlinear input in the sliding mode as:

S(t) =0
x (t) = Ax(t) + B®,, + Be(zx,u,p,t)
= [I-B(CB)'C]Ax (7)

where I is an n X n identity matrix. From equation (7), it can be seen that the
invariance condition® also holds even though the system is with “nonlinear” inputs.
Remark 2: From the above analysis, it can be concluded that the uncertain system
with “nonlinear” inputs in the sliding mode possesses the same property as those with
“linear” inputs in the sliding mode being able to be made. Accordingly, the design of
the switching surfaces can be achieved through same deriving procedures for the
systems with “linear” inputs.

From the analysis mentioned above, it can be seen that how to drive the system
trajectories onto the sliding mode is the key work for system stabilization. Before
stating the scheme of the controller, the reaching condition of the sliding mode is given
below [23]:

Lemma 1: The motion of the sliding mode (6) is asymptotically stable, if the

following condition is held

S"(t) S (¢) <0, V>0 : (8)

To fulfil the condition stated in eq.(8), the desired switching control is suggested by

___BC's
u(l) = ” BTCTS “ 95(_1;,;) (9)
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where
$(x,t) =7—ka2 [I(CB)'CAll +& Il =l +&f, B>1,r >k, (10)

It notes that || u(z) || = #(x,¢) is implied by eq. (9). The following theorem shows
that the proposed control in eq. (9) drives uncertain nonlinear input system (1) onto
the sliding mode S(z) = 0.

Theorem 1: Consider the uncertain system (1) subjected to Assumptions 1, 2, and
inequality of (2). If the input u(¢) in equation (1) is given as that indicated by (9),
then the system trajectories asymptotically converge to the sliding mode (4).

Proof: Consider the reaching condition of the sliding mode (4). If equation (1) is

substituted into the derivative of the state = in (8), one can obtain
S™(t) S (¢) = STCx (¢)
= S'"C[Ax + B®(u) + Be]
Then eq. (2) is applied to the above equation to yield the following inequality

expression:

ST(t)S (1)< IISTCB I 1 (cB)'CAll |l z Il + STCB®(u)
+ “ STCB ” (kl “ X “ *+ kz H u “ * ks) (11)
From equations (9) and (3), we have
. . ___ SCB
w®(u) = T BC’S H $(x,2)P(u)
>ru'u = 9 (x,t)

Therefore, the above expression can be rearranged as

T 2 | B'C'S ||
SCB'GD(M)g—ﬁ5 (.I,f) 56(.1‘,15)
=-r#(x,2) || B'C'S | (12)

Inserting equation (12) into the right hand side of the inequality in (11), it yields

S"(t)S ()< |ISTCBI{I(CBY'CAll x|l - ré(z,2)
+ (kyllz |l + kb (x,t) + &)} (13)
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From the $(x,¢) defined in eq. (10), the following condition can be derived.

ST()S ()< UPISTBI{IICB)'CAll + &1l z || + &) (14)

It is conspicuous to result in

S™(£) S (¢) <0 (15)
when S(¢) # 0. Then the proof is completed. O

Remark 3: For the case in which @ (u ) represents a sector-bounded vector, Theorem
1 stills provides a sufficient condition to guarantee the system dynamics globally
asymptotically stable. Let @ (u(z)) = [®,(u), ®,(u),, D, (u)]" where ®.(u) is

characterized by

ria < u®(u) < ru’, fori=1,2,7,m (16)
It can be derived straightforwardly to yield

rauu <u'd(u) < r,u'u (17)

where 7, = min{ry,ry,*, 7.} and r, = max {ry, Py s72ml . If we chooser, = r
and r,—> ©©, then the last expression satisfies the condition defined in (3), that is, the
upper bound of the sector nonlinearities can be released. Therefore, the developed
variable structure controller in eq. (9) also works effectively for the systems with
sector-bounded input nonlinearities.

Remark 4: If ®(u) = u, which means that the system has no input nonlinearity,
then the proposed variable structure control law in (9) is applicable to control such a
system as long as r < 1is taken since «'®(u) = u'u = ru'u is always kept.

An effective control method, variable structure control method, has been derived
to stabilize the uncertain Lur’e-Postnikov system. It has been shown that the proposed
control can drive the uncertain system trajectories onto the sliding mode even though
the systems are with “nonlinear” input. Moreover, the uncertain systems can also

preserve the invariance condition even though the uncertain systems are subjected to

the “nonlinear” inputs.
CONVERGING RATE CONTROL DESIGN

In the previous section, we have guaranteed that the motion of the sliding mode is
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stable under the proposed variable structure control law, but we have not discussed the

convergence rate of this motion. Now we discuss this problem in the following

theorem.
Theorem 2: If the variable structure control of (9) is modified as

_ B'C’S
u = I B'CS || $.(x,t) (18)
where
_ q S's
Sﬁa(I, t) = ¢(x,t)+ 2(r—k2) ” S'CB ” g>0 (19)

where ¢(z,1) and S(¢) are the same as defined in egs. (9) and (4), respectively, and

g is a nonzero positive constant. Then the rate of attractiveness to the sliding mode is,

at least, as fast ase ™ .

Proof: Similar to the proof of Theorem 1, let thelLyapunov function candidate be

V() =5 IS I1° (20)
Then the following inequality can be derived

V()= S()"S (1)
< ISTCBIIICCBY'CA Il Iz |l b, + (ki 2 || + kst + £
<A ISTBILI(CBY'CA Nl + k1l x|l +kil-g 5SS
<-q5lsl=-qv (1)
Multiply e” on the both sides of (21) and rearrange it to yield

diya

7 (Ve*) <0 (22)
Integrating eq. (22) between the time interval [¢,, ¢] , we obtain

V(t)e" — V(t,)e™ <0 (23)

or

V() < V(e ™ (24)
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Fig. 1. State variable dynamics for the system under VSC: x; and x,

Because V() is the sum of the quadratic form of sliding mode motions, the proof of
this theorem is completed. O

In the following section, a numerical example is illustrated to demonstrate the validity
of the proposed variable structure control method.

AN ILLUSTRATIVE EXAMPLE

Consider a Lur’e-Postnikov system which is described by equation (1). It is
reshown below

x (t) = AI(t) +B¢(“) +B3(x!u’p,t)

The corresponding parameters of the illustrated system are given as follows:
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10|
8]
-10 |
-20 . Y T 1
-] 1 2 3 4q
t (sec)
Fig. 2. The proposed control signal u(t).
0.0 1.0 0 X,
P TN
-0.5 -1.0 1 x
@(u) = (de'"™ " + ycos u)u d>ry>0

1 +sin 1
e(x,u,p,t) = L (z2+ x;._z)ze“ ) Lllu |l + 25 c08 x,
From equation (2), we have the following relation:

lell < N ze™ = Mzl + Nl Hall + |l Z5cos . |
<k llzll +&lTul +4

Therefore, we can take k&, as

kl = ” ll ” 322 ” lle(l*'sin,zl) H
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4@_fiu

-40
T

W
B

2
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Fig. 3. The corresponding input function ®(u).
k=0l =1
ks = |l L1l = |l Lscos z, |l

Equation (3) yields

u'®(u) = (de™"' + ycos u)u’
> (d-7)u’ = ru?

to result in » = d — ¥ . For numerical simulation, we haved =1, y=0.5, /, =0.04,
{1, =0.2, and /; =—- 0.5 to yield

=08y k=03, k=02, k=05
In addition, 8 =1.5 is taken for eq.(14), and ¢ = 5is chosen for eq. (19). C =
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8] L . P e
T

W
.

2
t (sec)

Fig. 4. The corresponding sliding mode S(¢).

[2 1] is selected for the switching surface and the initial value of x is assumed
[z, xz,)7=[1 2]"insimulation. The computer simulation for this system has been
performed with sampling step of 0.01 sec. Fig. 1 shows the transient response of x,
and z, . Fig. 2 demonstrates the proposed control u (z) which forces the system to the
designed sliding mode S(¢) . The corresponding nonlinear input function ®D(u) is
illustrated in Fig. 3. Fig. 4 gives the corresponding sliding mode S(¢) . Fig. S gives
the phase plane between x, and x,. The corresponding converging speed control is
shown in Fig. 6, where the real converging rate of V(z) is within the proposed speed

range.
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2 x2(x1)
1
8
_1.
T L]
] 8.5 1

x1
Fig. 5. The phase plane between x; and x;: x; (x,).

CONCLUSIONS

An effective control method is proposed for stabilizing uncertain Lur’e-Postnikov
systems. The main contribution of the current work is the construction of variable
structure controller for uncertain systems with “nonlinear” inputs. It has been shown
that the presented VSC controller can drive the trajectories of the uncertain systems
with “nonlinear” inputs onto the sliding mode. Furthermore, it has been proven that
the uncertain systems with “nonlinear” inputs also possess the advantage of
insensitivity to the uncertainties and/or disturbances as those systems with “linear”

inputs in the sliding mode. Therefore, the investigated VSC method of the current
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g UCt>: 1, Vomexp(—-qtd: 2

w4
B

2
t (sec)
Fig. 6. The corresponding Lyapunov function V (¢) and specified converging speed
V(0)e .
work can be applied to more practical physical systems with and/or without input

nonlinearities. The converging rate can also be ensured within a specified range.
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HEM N EE R, EEAERERRM (A0: 100Mbps LA L), tHEbBAERR
R G Bk, HEMERECERECMAE, EEAEARERKE (U
64kbps), HESHASRMYFRETREMRTESEEBER, ASRE MR, THE
B EER, BREREg, 2ERE 8RR,

WEE 2 ST B EERIEE (transmission delay) BEMEFHREREME, LHES
AEMEp Rk 1 RS SEB R (delay variance) BRIRILERREM MR (15,
16), thE M FiEZ S REETAFFEBEVFEEREFEN, MRFR—ERE
EERFHERE, IARERESRHENEE, REERMTEREHERE, #
FTENE AR ESERIRIE LRI AR (14). FIUALAR B IEEEAME K P RILE
HERER AL EHETEREENET
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High Resolution [€———» Computer [€——P Image Sever

Workstations Network
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¥

Gateway Wireless Gateway

PCs e
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H Wireless
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Palmtop multimedia

terminal

W1 ZRBERRGEEE (16)

Network Bandwidth (Mbps) Dedicated or Shared Transmission Delay Delay Variance
Ethernet 10 Shared Random Sl
Iso-Ethernet (isochronous part) 10+6 Shared Fixed<l1ms 0
Token Ring 4/16 Shared Configuration dependent<20ms Max
100Base-T 100 Shared Random o
Demand Priority 100 Shared Configuration dependent< 10ms Max
FDDI 2x100 Shared Configuration dependent Max
FDDIII (isochronous part) nxe6 Shared Fixed<1ms 0
DQDB QA Access 2x100 Shared Random o
DQDB PA Access 2% 100 Shared Fixed 0
X.25 <2 Dedicated Random oo
Frame Relay <50 Dedicated Random ]
ISDN nx0.064 Dedicated Fixed<<10ms 0
ATM Dedicated Bounded < 10ms Max (AAL 5)

¢ = asynchronous network without delay jitter control
max =synchronous network with delay variance between 0 and max delay

0 =isochronous network with constant delay

B2 GG EGTES
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E3ETSEEEALEEERETECME (12), P XEET. BEEH.
BET (CD), BiE. BEE G T EHKREE (FEEHE) 3318 16kbps. 600kbps.
704kbps. 2.4Mbps. 27.7Mbps, HEFHEFHE AR, WEEAFERITCESR
ZJRHA

ERT (1997/10) FRHANEEE, BTEPETERE, —REEBER 1.5
B, BERE/INA 1.2xT7x3.6 I (in’). AN ERAEEER. EBRFEHE.
HERNEREEE, SOXREE, SETEBEANE Sinx3in, BTER 480 x 320 [E
% (pixels), %4 64k Video phone (B(H kpixels/frame), HPFIEREEER/N, Fr
BEREEEEER, A REREHEEEEE,

REE RIS FHEARE LRI FERIVNER, EERHETERF. AR
E [EIERBEEFAREAR], BREE. £%. FE5H, THEASHEER
HIRAHEAENT, FRRRBETF LRERET, BEUBREHZRE, &
HTENRERIEREEES, BRMESRE AL EBFRARMHERETS: —@d
55, AUEEEREGS, EREREESE=6HR. Z—ERSEREIT
5|, HPRIETEEE A EAE R R,

=, THERAERMEEN

EAE b, —RITHEAEHE LASERTFHE T EGNE, HERLERER
CRREE, MRFESARRENE, TREEAERGFRATHZHNT, BH L,
FREFEE T EGS, HNERSICRREFERE, E2EAE LT THEMEEER
ATEENET R EH—Am SR, EAZSLEARRRE, ERBTRE, 83k
Fiaksk, fEFRETaoUE, AMENTHEEAEEHETTFRRAELFERR, BAOHE
RERE,

TEMEAEREERXEA, B, MEBREME, MEREAZEMER, ATLAE

BREEABAEK., BTECREER, BRMARAMEREITNERS, 5(FREER
1% (State-transition model), HN[E 4 Fix.
Aos Ay s M TEFAETHEEE, e e v, o TRBREBEGTEE, REOR
FHEFIEIREE, REE 1 E N BFEBICRIRE, BREFEAEEREEREAT N Ed
%, WERRGHETT] (queve) NEREREE N Ediw, EBMGFTIHFRFERER.

B DI ECAEBMMST (Possion distribution), A M/M /1 {75 &g
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IKbps 10Kbp 100Kbps  1Mbps 10Mbps 100Mbps

Styled Text
10Kbps

Speech Graded Audio
Still Images
Low Quality 1.5Mbps
Compressed Video

High Fidelity Audio 1.5Mbps

Medium Quality - 6Mbps
Compressed Video
High Quality, 24Mbps
Compressed Video

Visualization

3 ZEMYHRRREGIAR (16)

A A A
0 0 l i 5 N-1
H K Hy

W4 MRAEEBERD

ot (16), Hop7ERBEBRA D& EREFEIEE, RARIFEEEIEHE
%, ERAREPEERS, FHRIREKREITWT:

A
,UIPL = APy, P, = F_[:PU (1)

EN=Zn=1, £E8XE
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(A.. + ,Un)Pn = ,unﬂPuu ok Rt
FIRRE B, BIVES

_ A[IAIH.An-l‘P
JEf2" " ey

R HTIIRER N, ARG 1:

0

>P,+ 3 P =1

B A=2,=" =2, =2, =gy ==, =
QRIAT LB 2R ERER P,
_(-p) _2
PU*I_pN+1;P—#<1
QMRS 1- P,
O AE T HORERERS:

p. = (1=p)p"
N — I_PN+1

7 S SNOVE FUOW W)
T AR SR s Ny BRSRCTC J

S T S R
et e o, STVET S
mmmﬁmm{mm}wwwmi

0 02 04 06 08 1
p

s FHEERE

(2)

(3)

(4)

(8)
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0 _.d:_i__.___j__._._.._i.:.—:{___;__ S J
0 0. 0. 06 og 1
P

W7 ERAEGSHRERE
5. 6. 738IFRR Py, 1- P, I8 o ZBRfR, —TE, FRESSREESE »
FERRPaniEEaE A, gt p<<1, FEEHFT:

P0=—§—1_—‘P;‘3—+)1m1,p<<1 (6)

P ot 1, REFRIRBBERAAD G TEZEER, FRETEHBRE,



26 FHHBERERENEEMEE LRSS HREFR

i Py~1, FiA1-P=0, 1-P~0, REFHEMLIHBER 0, EfaraHEFER

p, = 1=0)0" g Va0 7

M. FEHtEREIES ETMH

PR EARERHAE 8 Frr, BARBFREATIIZEELHZ ZEN,
AR HEMEREE FRHEMEAET FRET HEBREMERZZEA,
R ESFEIRET, ARHFERETRARELCHERRE, oI LAFEMYI#
ZBEFEERRE, AR S LT IRE R E.

aEFE

TREER
A1 &

T -
R - o—[TTFo—

i IR A SR E RRE SIMEE AT

M8 *mHtAMAERR

B FRBERZREMPENEEZBEREE, Wl B ERREERRTRE
BAEEZ R, MEMREEATEEE, FURMRBEB#ESHRELNZ
Hifh, EAR b, WHASNETZREHEBEE, HEREG SRS EE8ET
5, EBBITFIREZREGMTIFIRE (o) ZHE, DUEBFRRAFGEALZ
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HIBEEAL R EENE, KEER M/M/1 {77 REEREE L4 (10, 11), #A
A (3) &MAE

P, = pPy,Py=1-p,p = f (8)
A BFEENREEE,  BTFHEAREEE, Pn BEATIIREE n EEFRIR
=,

MEFFIEE L BRMBIERFZBEE Pwaiting

T
Pwailing=P0+Pl+”.+PL: EPHPO
n=0

2 L L+1
=P0+PP0+pPD+'°°+pP0=1_P+ (9)
RATH T
‘A o R T o e —
e R I P
Y, O S I i H
0 heas A W | :
08 'jr B /'_/ .- 1
/ o i
? ) '
EO‘!F;----;A-------;/EH—J:? -------------- - ------------------------------------
08|t ocn st e
o A z
gos---;‘----;’-’ ---------------------------- Lt T IR SSE S L R E R L bR EtRLEE
8 | i
504L~5{———.&'{‘ S5 IV SN TRNS! ITRUOEE 4
D Py o
7 H) / v
(?,‘03][.:,L....‘ “be-
'/ '
0.271 =
01?- ——————————————— 1
ol i 1 i
0 ) 10 15 0 V] 30 3 4 4 50
.. Buffer length
My REEHAE

B 9 BETESHBENMTIRE (L) RERRZIRHM, ERMEREFEFIRER
5, MEFRBEEREEZRERSZRM, ERERBERIEBETE,

ERRFEERFFAKREFARRENE, ERARETRSBEFFRE, F
FRIEE VIR EE, EHREE, ZEREHEES 5B 2POWER. yPOWER
POWER , #¥81ZE0] 5 POWER 40

POWER,,, = zPOWER + Pusiirs + yPOWER + Puraision + POWER + Prornat e
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(10)
Puiins = 1= p™ 1y
P isiee = pC1 = p) (12)
P =P (13)
W% EE AR (3, 4), HMEE
z20.25
y<L1.25 (14)

x, y HEBRAHEMSEE, i POWER E5 100%,

B 10 R AR (10) ZFER, FIRE (n) BRE, RESHHEERK, &
YT RIFRDEINEREE, WHEBER 100%, B, EBTAEEEE/IVINAIRES
HASEr, RFEEEERER, HEENER 100%.

RIRERES i

W10 RiEEEBES

CNE P

¥ FRISEBF R HARFEEARE, RRARIELFREHFIHFE,
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FHETAEZATC 2000 FETHISARBGE 500 BE LI L, ARESHT, WEEEEERER 1. 5
BLAT, BREETFFH, ABMTEUEBERAGRESE, BUES, 07, U
FREMZSAGEEmTHMN. HRPEFREERGT, LEMFETITELAK,
FiLlEREEERRIEEEE,

BIFRNERERGEHE, SRR EERENTRERIG ERNIEHIE M, BLEED)
BEFE. HEEHETE: FIME, BUISREFREE S LR EEEIASELE
FIHENEB (9]0

TEEREREEAEA . B, WEREBERZRME, i HEEARIEZEHER,
FROAEBREREIR S, B THERERRN, RMRBEERTAEZL, 518Kk
RERSROIEY, MHRSEE FREIERE . TR, DRFEREMSHEERES,

FHERMEREEAGTEEZFREABATREATIIZEREHSHEA, HiE
ITRENETR, FEFEAMNEERBET T REHTREELERE, BT
BT, BREFHRBAREZEYE,

SHEBRBRENEEFRIFHVEEHEEEYE, REETFETHEEHEYE, X
REF TGN AR B B ETE iR AR

e
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RS G A R RIREED .
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Semi-batch Power Management Methods for a Palmtop
Multimedia Terminal

YING-WEN BAI
Department of Electronic Engineering
Fu-Jen University
Taipei , Taiwan 242, R.0O.C.

ABSTRACT

Power management technology is one of enable technologys for the
implementation of mobile computing. Especially, for a palmtop multimedia terminal,
due to the variance of the network transmission speed, the terminal may wait the
multimedia data coming and do noting except wasting power. To redue power
consumption, this paper propose a semi-batch power management method which can
switch the handheld machine to waiting state with low power consumption. Until the
terminal accumulate certain amount of multimedia information, it can be switched to
normal state with normal power consumption in order to process and display the block
of information. From mathematical point of view and simulation result, we show the
semi-batch power management method can save power consumption based on the
combination of low power state, transistion state, and normal power state. For the
simplication of the combination modeling, we use Possion distribution model for the

analysis.

Key Words: Palmtop multimedia, Power management, Semi-batch, Queue, Delay

variance.
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A Note on Estimation Algebras with Maximal Rank

WEN-LIN CHIoU (1JAND CHENBING LU
Department of Mathematics,
Fu-Jen University
Taipei, Taiwan 242, R.O.C.

ABSTRACT

The idea of using estimation algebra to construct the finite
nonlinear filter was first proposed by Brockett and Clark, Brockett,
and Mitter independently. The concept of estimation algebras was
proven to be an invaluable tool in the study of nonlinear filtering
problems. In his famous talk at the International Congress of
Mathematicians in 1983, Brockett proposed to classify all finite
dimensional estimation algebras.

In the paper of Chen-Yau-Leung, they introduced a matrix’s
equation and use it to obtain a classification theorem of finite
dimentional esitimation algebras of maximal rank with the state space

dimension 4.
In this paper, we provide a different proof concerning the

equation of matrix when the state space dimension is less than or equal
to 4. Also for arbitrary finite-dimensional state apace, we provide a

simple sufficient and necessary condition for a structure result.
Key Words: Nonlinear filter, Estimation algebra.

INTRODUCTION

The idea of using estimation algebras to construct finite dimensional nonlinear

filters was first proposed in Brockett and Clark[1], Brockett[3]and Mitter[12]. The

[ 1] E-mail:math 1014@fujens. fju.edu. tw. funded by NSC grant NSC-86-2115-M-030-002
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concept of estimation algebras was proven to be an invaluable tool in the study of
nonlinear filtering problems. In his famous talk at the International Congress of
Mathematicians in 1983, Brockett [ 2] proposed to classify all finite dimensional
estimation algebras. Let n be the dimension of the state space. It turns out that all
nontrivial finite dimensional estimation algebras are automatically exact with maximal
rank if n = 1. It follows from the works of Ocone [13], Tam-Wong-Yau [14], and
Dong-Tam-Wong-Yau [ 11 ] that the finite dimensional estimation algebras are
completely classified if n = 1 . In fact, Dong, Tam, Wong, and Yau have classified all
finite dimensional exact estimation algebras with maximal rank of arbitrary finite state
space dimension for filtering system (4). For arbitrary finite dimensional state space,
under the condition that the drift term is a linear vector field plus a gradient vector
field, Yau [15] have classified all finite dimensional estimation algebras with maximal
rank of filtering system (4). Chiou-Yau [5], Chen-Leung-Yau [6] and Chen-Yau-
Leung [7] have classified all finite dimensional estimation algebras with maximal rank
of filtering system (4) forn = 1,2, n = 3, and n = 4, respectively. Chiou [8]
consider a different filtering system (cf. system equation (1) with g(z(z) =
nonsingular constant matrix). The author obtain a similar classiification theorem as in
Yau [15], and have classified all finite dimensional estimation algebras with maximal
rank for n << 4 in this filtering system.

In the paper of Chen-Yau-Leung [7], they obtain a classification theorem offinite
dimentional esitimation algebras of maximal rank with the state space dimension 4.
The key point of the above classification theorem 3.2) showed in Chen-Yau-Leung is
to prove that w; are all constants for 1 <<i,j << n . And the three authors of the paper
introduced a matrix’s equation (cf. Theorem 3.1) to deal with the key point of the
main theorem.

In this paper, we provide a different proof concerning the equation of matrix when
the state space dimension is less than or equal to 4. And for arbitrary finite-dimensional

state apace, we provide a sufficient and necessary condition concerning the matrix’s

equation.
THE BASIC CONCEPTS

In this section, we will recall some basic concepts and results which we need for
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the next section. Consider a filtering problem based on the following signal observation
model

{d:r(t) = f(x(2))dt + g(z(2))dv(t), x(0) =z,

dy(t) = h(x(¢))dt + dw(z), y(0) =0

in which z,v,y and w are respectively R", R®, R™ and R"-valued processes, and v

(1)

and w have components which are independent, standard Brownian processes. We
further assume that n = p, f,h are ¢~ smooth functions, and that g is an n by n ¢~
smooth matrix. we will refer to x () as the state of the system at time ¢ and to y(¢) as
the observation at time ¢ .

Let p(¢,x) denote the conditional probability density of the state given the
observation {y(s):0<<s<Ct}. It is well known (see [10], for example) that p(¢,x)
is given by normalizing a function ¢(¢,x) , which satisfies the following Duncan-

Mortensen-Zakai equation (see [16], for example):

do(t.x) = Loa(t.x)dt + ; Lo(t,x)dyi(t), o(0,z) = o, (2)
Where
24 on B mB Lo
Lo=5 21 or; I,.(gg i ,-;ax,.f*‘ —p &Nk
and for i = 1,--,m,L,is the zero degree differential operaror of multiplication by A;.

&, is the probability density of the ini tial point x, . In this paper, we will assume o, is

ac” function.
Equation (2) is a stochastic partial differential equation. In real applications, we
are interesred in constructing state estimators from observed sample paths with some

property of robustness, Davis in [10] studied this problem and proposed some robust

algorithms.

In our case, his basic idea reduce to defining a new unnormalized density

u(t,z) = exp( = 2 h(x)y(8))a(t,2)

It is easy to show that u (z,x) satisfies the following time varying partial differential

equation
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a _ m
{ﬁum = Lo&(t,2) + 3} 5.()[ Lo, L]E(2 ) -

u(0,z) = ¢
Here we have used the following notation.
Definition. If X, Y are differential operators. The Lie bracket [X,Y ]Jof X and Y is
defined by [X,Y]¢ = X(Y$) — Y(X$) , for any c¢” function ¢
In this paper, we consider filtering systems with g(z(¢)) is an orthogonal matrix

in the filtering equation (1):

dz(t) = f(x(2))dt + g(x(t))dv(t), z(0) = x,
dy(t) = h(x(t))dt + dw(t) y(0) =0 (4)

g(x(t)) is an orthogonal matrix

Then

L 9f 14,
_22

1 o <9k
2 = 9xt = axl. i=19x;

Let

and

i
=

_3ofi ¢
_iE :c.-+s2f"+

=3
[

n
n
-

Then we have
Lio=+( 3 D'-1)
LA L

Property 2.1.

(i)[XY,Z]=X[Y,Z]+[X,Z]Y, where X,Y,Z are differential operators.
(ii) gD h] = gg—h D; = 8% f:» g and h are smooth functions

(iii)[gDirh ) =~ ghw, + g S0, ~ h SED,, where w, = [D,.D] =02



) 2 . Oh ’h
(iv)[gD},r] = ZgSEDJ- *8 5
2
(v)[D*kD,] = ziDD,. ~ 2hw,D, + a—’iD,. — h g—%
Ow;; Sw; ’w
— Rensband ot
(vi)[D},D}] = 4w,DD, + 2 52D, + 2 324D, +a—Lx,ax,+2‘”
(vii)[D?,hDD,] = 2 —DlD,Dj + 2hw,DD, + 2hw DD,
o’h Sw; Iw
+ a—D,D + 2h a—LD + h ‘a;‘;—D
e 224D + h Dy
ox, ox 8.2:&
(wiii )[DD,,hD,] = —D,D,., + %D o + haoyD; + ho,D,
o’h 9_6251
T ax,aij* ok Az,

Definition. The estimation aalgebra E of a filtering problem (4) is defined to be the

Lie algebra generater by
‘LD!Lly'“!Lm% ,O?’E =< LD’LI,.."LﬂI >L.A.

E is said to be an estimation algebras pf maximal rank if for any 1 <<i << n . there exists

a constant ¢, such that z; + ¢;is in E. E is exact if there exists a function ¢ such that f;

Zég—’forlﬁién.
ox;

We need the following basic results for later discussion.
Theorem 2.2. (Ocone [13]) Let E be a finite dimensional estimation algebra. If a
funtion £ is in E , then & is a polynomial of degree at most two.

The following property 2.3 and theorem 2.4 have been proved in Yau [16].

f,
Property 2.3. %f: _aa—x_ w; are constants for all ¢ and j if and only if

(fla"':fn) = ([“-",l,,) * (aé.r%’.."%)

where /,,"**, 1, are polynomials of degree one and ¢ is a ¢” function.
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Theorem 2.4.Let F(x ***,x,) be a polynomial on R" Suppose that there exists a
polynomial path ¢! R—=R" such that 11_{5 [ e(t) || =<0 and liIEF(c(t)) = — o0 Then

there are no ¢~ functions f;,**, f, on R" satisgying the equations.

Sl Sp=F

S10x; =
The following theorem 2.5 proved in Yau [15] plays a fundamental role in the

classification of finite dimensional estimation algebras.

of;

Theorem 2.5. Let E be a finite dimensional estimation algeba of (4) such that w,; = v

of. . . . .
- 55 are constant functions. If E is of maximal rank, then E is a real vector space of

7
dimension 2n + 2 with basis given by 1,z,,x,,***,x,,D,,D,,***, D, and L,.

The following theorem 2.6 and property 2.7 proved by Chen and Yau [4], [5]
is important progress in the program of classification of finite dimension estimation
algebras.

Let Q be the space of quadratic forms in n variables,. i. e. real vector space
spanned by zx;,1 <i<j<n, LetX = (z,,*",z,)" . For any quadratic form p €
Q , there exists a symmetric matrix A such that p(z) = X'AX . The rank of the
quadratc form p is denoted by 7k (p) and is defined to be the rank of the matrix A .
We need the following definition to obtain theorem 2.6 and property 2.7.
Definition. A fundamental quadratic form of the estimation algebra E is an element p,
€ E ) Q , with the greatest positive ranki.e.7k(p,) = rk(p)forany p EE N Q.
The quadratic rank of the estimation algebra E is defined to be rk (p,) .
Theorem 2.6. Let E be a finite dimensional estimation algebra of maximal rank. Let &
be the quadratic rank of E . Then
(1) The observation terms h,(x),1 << i << m are affine polynomials.
(2) (a) w; are constants, for1 <i <korl<; <k

(b) w; are degree one polynomials in x4, ,z,, fork +1<i,j < n

(3) g = ; % + ; f?is a polynomial of degree 4. Moreover, the homogeneous

polynomial of degree 4 part of 5 depends only on x,.,,***,x, variables.

Property 2.7. Let E be a finite dimensional estimation algebra of maximal rank. Let &
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be the quadratic rank of E . Any homogeneous polynomial of degree 2 in E depends

only on x,,x,, ", Z.

A REPROOF AND A SIMPLE SUFFICIENT AND NECESSARY
CONDITION FOR A STRUCTURE RESULT

In this section, we provide another proof of the following theorem 3.1, which has
been proved by Chen, Yau and Leung [7], and a simple sufficient and necessary
condition for a structure result when the state space dimension is arbitrarily finite-

dimensional.
Theorem 3.1. Suppose that 7,is a homogeneous polynomial of degree 4 in n variables.
If n<4and & is an antisymmetric matrix with each entry a homogeneous polynomial

of degree one such that

AL = 2H(7) (s)

2

where H( 1;4) = (a—ig;—) is the Hessian matrix of 5, , then &£=0

Proof: Write

1 _
EH(vd) - 1gs§jan"x‘x"

A= ; Agx; (6)
Since & is an antisymmetric matrix, we have A, =— Aj. By assumption &AL =

%H(m) . we have

(3 Az)( 3 Am)
= ($ Az EAz)
lsf\—‘}'snA'A;xFri( ,.Z; Ax)
lSi;anAA;r*r" " 15f§s"A"A;I?rf * .-; AAxz;

S_ (A= A) + A= A))za, + 5 A= Az,

1<i<j<n
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= 2 Hgaa, +§ Haa;.

1<i<j<n
Hence
AA, + AA, =- H,,A} = H, )
Let
= Dmsimasdlnintsidre s (8)

where (i,,7,,15,1,) s are constants, and let H;(i,;) denote the (i,j) entry of the

matrix H;. Consider the term a (i ,7,j,j)xxin 7. and differentiate it as follows:

’ali,i,j.jlxx

.oy 2 Oaliyi,g,i)x y 5 o ufe
v = 2a(i,i,j,j)z}, o = 2a(i,i,j,j)zj,
T J
d’ali,i,j,jlxm! ;A g
= =4a(i,i,j,j)zx;.
b J

Note that
H;(i,i) = 2a(i,i,j,j),H; = 2a(i,i,j,5),H;(ij) = 4a(i,i,j,j),
so we have
Hy(i,i) = H(j,j) = 5H,(i 1)) (9)
In view of (7), (8) and (9), we have
DA (,DA L) = ZAG,DALL])
= %i SULAG,DALLG) + A, 1)A(LL,5) ]} (10)

Since each A, is an antisymmetric matrix, i. e. A;(r,l) =—A,({,r)forallr, . We

have

ZJA,-(i’l)Z = ZA.(]ME)Z = %{ Zt[A;(i,[>A,(J;l) + A,(I,J)A;(J,t)]}

(11)
Similarily, we differentiate the term a (i,i,7,j )z, in 5, and get
d’ali,i,i,jlxk, c ..oy 2 Daliiig)ak S
oz, = 3a(i,i,i,f)z;, o’ —6a(z,z,z,])x¢j



Note that
H.(i,j) = 3a(i,i,i,j) Hy(ii) = 6a(i,isi.j),
So we have
2H,(i,j) = H,(i,i). (12)

In view of (6) and (12), we have

2{- SAG,DA UGN =1 Z[AG DA + A;G, DAL, D]
Since each A, is an antisymmetric matrix, i. e. A; (r, 1) =—A; (I, r) forall r, 1,
We have

SAGLDAG, D = ZIAG, DAL + ZAG,DAG,D],
or

22A(,0DAG, ) =2 2A(i,1)A,(,1)

SAGDAG,) = ZAG,DA (L) (13)

Let (I_,_lj‘) denote the j * column vector of A, , then we can rewrite (12), (13) as

follows:

DI = IGDI=HENGED +GEHGENE 1<i<j<n,

GNGD = GG 1<i<j<n, (15)
We are going to prove & =0, that is to prove each A, = 0 by (6). We only need to
prove the state space dimension 4 case. Since the submatrix ((A;),.,), 1 <k,l < m
(m < 4) of the matrix A, = 0if A, = 0.

For state space dimension n = 4 , since A,;,A,,A;and A,are 4 X4 antisymmetric

matrices, we write
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0 a b ¢
-a 0 Al, Al
M=y _AL, 0 AL
-¢c —-Al, - Al
0 d A2y A2y
A, = ~d 0 e f
— A2, -—e 0 A2y
-A2, —f —-A2, 0
0 A3, g A3,
A, = - A3, 0 h A3y,
-g -h 0 i
- A3, —-A3, -i 0
0 A4, A4, ;
- A4, 0 Ady k
A, =
- A4, —-A4, 0 [
= -k -7 0

By (14), we get thefollowing system of equations
(TH1 = I@GDI = THED + THED)
THI = IEDI = FITHED + DG

(CHI = @D = HEHED + CDED]

@D = IGDI = FETHED + DG
@D = [@ED] = FTHED + THED)]
GBI = @D = EDHE3) + 33 @D) (16)

By (15), we get the following system of equations
(T,D@. D = T, D(A.2)

(T,DG 1) = (1,1)({1,3)
T, D@1 = (3,3)1,3)



(2,2)(3,2) = (2,2)(2,3)
(2,2)(4,2) = (2,2)(2,3)
(3.3)(3,3) = (3,3)(3,4) (17)

Plug the entries of A,,A,,A; and A,into (16) , we have
a’+ AlL + AlL=d* + A2}, + A2},

_ %(Alqul, + Al1,A2, + be + cf)
b+ AlL + Aly= A3, + g* + A3,

- —21-(— Al,A3, + Al,A3, — ah + ci)
Fa AL + AlL= AL + Ad4+ 7

- %(— Al Ady~ ALy A%~ ak + BE)
<A2f3+ez+A22 = A3, + h*+ A3, e

. %(A2,3A312 + A2,A3, + dg + fi)
A2+ P+ A2L= A4, + A4+ &

= Laz.a4, - A2A4 + dj + o)

A3+ A%+ i*= A4+ A4+ P

= L(A3,A4,+ A3, A4y + gj + hE)
2

Expand the system of equation in (18), we have
AlL+ Al - A2, - A2}, =d* - 4° (1)
Al + AL - A3, - A3, =g"-b" (2)
<A1§4+A1§4—A4f2~A4f3 =ji=-c (3
A2+ A2, - A3, - A3, =h'-¢" (4)
A2+ A2 - A4, - A =k - £ (5)
A3, + A3, - A4l — A4y = 1P - i° (6)
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2A15 +2A1% — A1,A2, - A1,A2, = be + c¢f —2a°  (T)
2A2% +2A2% - A1,A2, - A1, A2, = be + cf —2d° (8
2A1% +2A1% — A1,A3, - A1L,A3, =—ah + ci - 2b° (9)
2A3%, +2A3, + A1,A3, — AlLA3, =—ah +ci —2g°  (10)
2A1% +2A1% + Al Ad, + Al A4, =—ak — bl -2 (11)
2A4, +2A45 + AL A4, + Al Ady =—ak — bl - 27 (12)
<2A233 +2A2% — A2,A3, - A2,A3, =+dg + fi -2 (13)
2A3, +2A3, — A2,A3, - A2, A3, =+dg + fi—-2* (14)
2A, +2A2, — A2, Ady, + A2, Ady =+dg —el —2f°  (15)
2A4, +2A4 — A2, A4, + A2, A4y =+dg —el —2f  (16)
2A3, +2A3% — A3,Ad, — A3,Ady =+dg — hk —2i* 17)
2A4, + 2A4, — A3,A4,; — A3, Ady =+ dg — hk - 2i° (18>

Plug the entries of A;,A,,A;and A,into (17), and expand it, we have

(b)A2;— (B)Alyu + (c)A2, — (c)Aly=—ad  (19)
(a)A3,+ (a)Aly+ (c)A3, — (c)Aly, =—bg  (20)
(a)Adp + (a)Al,+ (B)A3s+ (B)Aly=-¢  (21)
V(@)A3n - (d)A2 + (A3~ (A2 =—eh  (22)
(d)Ad, — (d)A2,,+ (e)Ady — (e)A24 =— & (23)
(g)A3, - (g)A3, + (h)Ady — (R)A3, =—il  (24)

Observe tht eqution (1) is equation (7) plus equation (8),

equation (2) is equation (9) plus equation {10,
equation (3) is equation (11) plus equation (12},
equation (4) is equation (13) plus equation (14),
equation (5) is equation (15) plus' equation (16),
and equation {6) is equation {17) plus equation (18).

We are going to prove that the trivial solution is the only solution of the system of
equations (1), (2), =, (24). That is (a,b,c,d,e,f,g,h sisisk,1) =0, and
Aly,=Al,=Al,=0,A2,,= A2,,= A2,=0,A3,= A3,=A3,=0,Ad, = A4,
= A4, =0.
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Let equation (25) = (7) + (8) +-+ (18). Then
the left hand side of (25) =A15+ A2%L + (Al — A2,)° + AL, + A2% + (Al
— A2, )+
ALL+ A3+ (Al + A3, + ALL + A3L + (Al
- A3, +
AL+ A4+ (Al + A4y + AL + A4l + (Al
+ A4,) +
A2 + A3, + (A2, — A3, + A2 + A3, + (A2,
- A3, +
A%+ AL+ (A2, — A4, + A2 + Adl + (A2,
+ Ady) + -
A3+ A4+ (A3, — A4, + A3 + Ads, + (A3,
- Ad,) +
=10
the right hand side of (25) = = (b —e)’—(c — f)—(a +h)* = (c - i)
—(a+k)-(b+1)V-(d-g)V-(f-i)
={@—il=(e+ 1Y ~Lg=jF=(h=RY
=10
So we have
the left-hand side of of {25) = the right-hand side of (25) =0.

Therefore
Al, = Al,, = A2;= A2,=0

A123=A134:A3122A314:0 a=—h=-%Fk
Aly = Aly = A4, = Ad;=0 b=e=-1
and
AZIQ:A2M=A312=A324=O C:le
A2, = A2y = A4, = Ady =0 d=g~=}

A3,= A3, =Ad,= A4, =0
By equation (1) - {6), we have a’=b*=c’=d’
Plug the above result into equations (19), -+, (24), we have

45
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(6)0 - (b)0+ (c)0 - ()0 =—ad

(a)0+ (a)0+ (c)0—(c)0=-bd

(a)0+ (a)0+ (b)0O+ (H)0 =—cd

(d)0—=(d)0+ (c)0-(c)0=+ab

(d)0—(d)0+ (6)0+ (5)0 =+ ac

(d)0—-(d)0—-(a)0+ (a)0 =+ bc

aZ — bZ e CZ = d2

This impliesa =6 =c=d =0, andA, = A, = A;= A, =0 Q.E.D.

The following theorem 3.2 has been proved in Chen-Yau-Leung [7]. For the

A

completeness of this paper, we provide proof here.

Theorem 3.2. Suppose that the state space of the filtering system (4) is of dimension n
< 4 . If E is the finite dimensional estimation algebra of maximal rank, then the drift
term f must be a linear vector field plus a gradient vector field. So E is a real vector
space of dimension 2n + 2 with basis given by 1,z,,x,,***, x,,D;, D, and L, Moreover
7 is a polynormial of degree at most 2.

Proof: Since E is an estimation algebra with maximal rank, there exists constant ¢; 's
such that z; + ¢; € E,1 < i < n . By property 2.1

[Lo,xj & Cj] = %[; D;~ VE -Ij]z %:21 [D?’xj] =D, cE
[D,,z;+¢]=1€E
Therefore z,,***,x, € E . By theorem 2.6, w, ’s are constants, for1 <i <korl<
7 <k, where k is the quadratic rank of E , and w; ’s are polynormial of degree one in
Ty Xk +1<i,j < n . Observe that
Owj;
[[LD’ ] Dr]— [_1(GJJD+28 )

a aﬂ)-,- 1 - a?. . 2
:z_;(wﬁwn"’_@) —~ 5 =l_w.r___1_i"7_

a.r[

In view of theorem 2. 6 and property 2. 9, we have that

n 1 a
i;leﬁvﬁ_Za—Iav_GE 1<1l,j<mn,

and then
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% g8, ~ li’LEE 4 TS0 4 Lome

iZE+1 oxox;
where 7,,is 2 homogeneous polynormial of degree m part of 7 (here m=4) and B; is the
homogeneous polymormial of degree 1 part of w; . Since 5% B — = _L a

2 EiI161r
homogeneous polynormial of degree 2 in E , it depends only on z,,***,x, by property
2.7. On the other hand, it also depends only x;.,,**,x, by the fact that 8,8, and 7,

i=k+1

depends on x;.,,"**,x, and by theorem 2.6. Therefore

3 1___’?_
i=§kj+!ﬁji8h za.rﬁ 0 fork+l<1 l<n

or

i
AN EH( 774)

where & = (8;),k +1<i,j <nis(n — k) X (n — k) antisymmetric matrix and

2
H(y) = ("aa—g—) k+1<1i,j <n,H(y,)is the Hessian matrix of », . By theorem

2.8, we have & =0. This implies that w;,1 < 7,j < n are all constants. By property
2.3

(fl’""fﬂ) - ([1,...’1") 4 (aé;l%,’a—axsb:)

where /,,***, [, are linear and ¢ is ¢~ smooth. Threrfore by theorem 2.5 E is a real
vector space of dimension 2n + 2 with a basis: L, 25,200 s, 9 By Dasi® Dk 5 Ll

Since & =0 implies 7, = 0, we have

ﬂaf n n
r;a—£+i:1f3+g§1h?= T]°+7]1+72+"73
- 9

S A LA

If 7, were not zero then we can choose a polynormial path ¢: R->R" such that lim | ¢
o

@ || = and imF(c(1)) = = © , where F .= g,+ 7, + 7,+ 7, = 2hi. This is

impossible by theorem 2.4. So 5; =0 and hence 7 is a polynormial of drgree at most
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two. Q.E.D.
We need Lemma A to prove theorem B which is a simple sufficient and necessary
condition for a structure result when the state space dimension is arbitrarily finite-

dimensional.

_l——hv —

Lemma A. Let_z,—g are vectors in N". Suppose that l—a) |? = r5|2 =5a- b, thena

=% =0
Proof: Suppose_;#(]. This implies_Eio. Let 8 be the angle of @ and & . Then

@1 = [51° = 51a | B cost.

So
(2| = %riﬂcosﬁ, and [5] = %[Zhos@
Therefore |
[a|= %%ﬁz’kos@z
This implies that cos§’ =4, which is impossible. Soca=5b=0. Q. E. D

Property B. Matrices A, = A, = =A, =0
(:’(;TJ,)(_I_,;) =0forl<i<;j<n
Proof: (=) Clearly it holds (<=) By (14)

(GHIE=1GDI = HENGED+ GEHEPLI<i<j<n  (19)
By assumption (;T;)(j_,;) = 0, and in view of (19). we have

(DI = 1GD I = HEHGD (20)
Hence

TN =G =0, 1<i<j<n

we have
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0 A1, - Al,
gg= ¥ 2.7
0 0 0
0 0 0
vy
0 0 0
0 0 0
Any Ange 0
Since A,,A,,"**, A, are antisymetric matrices, we have. A, = A, = - = A, =0
Q.E.D
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FRRAERAKMGFAREN—L4&
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Brockett & Mitter 73 A2 HF] G H B E B IRHERIELRE
Wl GEtRESIERAE A RIS BRI E ik, #
1983 £F Brockett ?%Hﬂ%ﬁﬁﬁ%ﬁ st U85 %8, 7& Chen, Yau &
Leung BIa&3H, E=NMEBEMB T —EE AR, ERFARER
R 4WFNT, EE%IH:?E[@ﬁfi‘h%ﬁ?kfﬁi’ﬁlﬁ#ﬁﬁ’]ﬁ&iﬁﬁ?
ABEREOETRBUEH S, EABRXEMEE (1) tiE
AR AEAREEEEE DR 4 R TREM S (trivial-
solution) HY5EE. (2) BRPHER AR EEEHERTE
HERIRIF T R ﬁﬁéﬁ%ﬁé’?ﬁ’] BT B

BASEER: JERIEIEE, AR
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SIFEERREEERANETEDEZEZRBT
REf-RAeBERREXRTFARNZE

gt & HBEFH®
KB

o E

fERZEBR AR B - REBEBAKRIE (differential display
reverse transcription-polymerase chain reactions DDRT-PCR) %4,
DIFFEE4hH R HARY#E RNA, ] anchored oligo-dT primer &7
mRNA #7 polyadenylated tail 1T RE#HHEN S —HRE T+ EEER
EHE | FHEETRABERRER, * 6% DNA EFEBE LK
TREFEA/NEHETEAMN mRNA fiTE£Y), Wt HEEA RNA
=41 DNase [ B2, T 20puM dNTP, 1.5mM MgCLIEE 2T
PCR SE%EE; Ma#RF DNA R4 (silver staining) FAfifRH#
SRS, T,MT FITR 5-3%{%3|F &7 DDRT-PCR 2
HESTE. EEESWRE, T-MA, TMG, T, MC MT[FH 5'-
#5777 DDRT-PCR HIREE R 50-80 {EE

—. 18

A% DNA (genomic DNA) R FREATRERSERAR, ARG EHRAE
SRR, BEVIEREES SRR K ERGARER RN REIHA
&, BZEE mRNA AHEET; {BE mRNA H{5# RNA /) 14%, BEFER
— L EISHAE mRNA, mRNA WEEMEXREHZARFE R T RHEBRE
& FTLANEER E mRNA Z3752% cDNA & (cDNA library) 25 %GB wIRAIE
firEkRE
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H37 cDNA JE, —itHE FREMBHEEE: 1) mRNA BREEF] A Oligo-dT
BalTFHEHE— cDNA #, 435IF]H Hairpin priming (Maniatis et al., 1982) .
Oligopriming (Land et al., 1981) K replacement synthesis (Okayama and Berg,
1982; Gubler and Hoffman, 1983) 8% ds-DNA, BREAIZFF dC-tail B0 linker
A IEAGETE, 2) FIF 6-mer BERES | F R B H mRNA FNEIERE—KR
cDNA, ILGEHES | THABE M cDNA, FLL DNA #1585 (DNA ligase) #7{
15 ds-cDNA, B&{ha[ LN dC-tail B linker 2 ZEREFEE R (Koike et al ., 1987),
ITHE 3 PCR (polymerase chain reaction) HiTHZEFHER, EALBRELERHR SI-
PCR (sequence-independent PCR) (Froussard, 1993) # 17 ¢cDNA [&E, LA HR{EK
cDNA [E#EIEEPZ T 5 RS mRNA BIEREL

Liang £ Pardee BB R —EZZH R Kk - REBHEHENXIE (differential
display reverse transcription-polymerase chain reaction, DDRT-PCR) YA ¥, DAEL®E:
Wi H E A SR A R R IR FAYZER (Liang and Pardee, 1992). HEfiT
PUfie & 2-anchored base #J 3'-5|F [T,MA. T,MC, T,MG 1 T,MT, H T,
~12 & dTs, M BIE dA., dC. B dG EB{LE A (degenerate mixtures)] [EZF P
mRNA #) 3’ UrTl 4% (E mRNA BREAEH kRS B ER KR, BES 35|
T, AR 10-mer EHES | FRTAEKEY 5°-5 T 82387 [ iSskHAE— % cDNA L& 3° in
TEIFERE R R EAH PP S 81T PCR ZEMCAER), EETHEA mRNA EXEA]
LIE#FE PCR EYJAR/IN, 7E 6% DNA EFEHE LESH T AEEBEA RNA
b mRNA Bl 8 E| 2 H mRNA Ti2KE cDNA; 10 H 40t #2 75 7] B Rk
mRNA BFEATER mRNA #8055 . mRNA fJE%, BURNAR Y E289# RNA;
ik PCR F:ffrerE Ak HFEFER EZE 95% ML ERERE S (Liang and Pardee,
1992; Liang et al ., 1993), HEIEFENERERK,

785 (Brassica oleracea var. alboglabra Bailey) B2 E AR S EL BRIETZ EYIH
BENEERRIEY), AW5EER DDRT-PCR T+ ELNHE AR RNA, LARE
% (silver staining) ¥83R DNA EFE# _FHTRA mRNA T4 M2KAE PCR ZEY;
BEN S EFREERE LEE R/ BRI cDNA E. #1T DNA EFL R E7F
EZ ¢DNA (cDNA cataloguing)

. MERGE

HESEFEETHRAERARAMEM. 3665 F8 T.MN (M 5 G 5L A B



B o{- 2 % 55

C, NB GEHAKCKT) HER Oligos Etc. AFFTER; 545 F/MRRUT=
& (Mou et al ., 1994) HINE R KB HWILEERBEYREEREGRN &1
{ERRE RS | FHEPREEES T GC 8BTS HE 50% .. #aEmAERE MY (self-
complementarity) . H 5'-Igk 3’ -k _(EHEELES—E G & C,

B 2 g BEAEYERB, LB B de Vries ez al. (1988) EHHEFE RNA, £
20p] KERSFES, HY 2ug #8 DNase | BELANTFEM RNA, 2.5:M 3-05m5F (dT,
MA, dT,MT, dT,MC. dT,MG H#&FHFz—, Hft M A dA, dG 2 dC), M
R B A DEPC (Diethylpyrocarbonate) -H,O Z 10!, 7 70C K FE 10min LAfE
RNA #MFTRMAIRS | FRIBRES, BINA 4ul 9 5 X First-strand buffer (250mM
TrissHCl pH 8.3, 375mM KCl, 15mM MgCl,). 10mM DTT (Dithiothreitol ).
20uM dNTP. 20U RNasin ribonuclease inhibitor, & 37C T{EM 2min &, 1B{RAY
A 300U M-MLV (Moloney murine leukemia virus reverse transcriptase), > 37C
T1EMA 1hr #, LL95C fEF Smin RERUK EfFREREE —20C miRfEt, B#ER
2.5uM B85k % FER[E]—fE 3’5 F . 0.5uM 5’-im5[F . 20uM dNTP. 250 pg/
ml BSA (bovine serum albumin), 1gl 10 X Super Taq buffer (500mM KCl, 100mM
TrisHCl pH 9.0, 15mM MgCl,, 1% Triton X-100). 0.5U Super Tag DNA
polymerase, 2ul K #8kX EHFTEEAIE—I cDNA, #IKE 10pl BEHE, B
7 Air Thermo-Cycler 1605 (Idaho Technology) #3537 T K fE, B e 94T
2min, EEZETIIFEGTIHEER 30 2K: 94T 2sec LU#E DNA &%, 42T 2sec 5|7
15 (primer annealing), 72C 30sec 15| F#E{# (primer extension),

FIH Gibco S2 EFEXFHEH 6% RAFGEILE® (polyacrylamide gel), 1
ET#EA 0.6XTBE buffer (75mM Tris base, 25mM borate, 1.5mM EDTA), LA
1600V FHFE YK 30min, FLL 1900V 60W HETENK: It BREREMAESR 2
FHEE/FR1EHE (10% glacial acetate) RIHEBRFEIE 20min, FEEREE/ LR, &
R R IERME A, L ddHO = REZEBE, BK 2min; BREA 2 A RER
(12mM AgNO;, 0.056% HCOH) #&#% 30min, i REWE, Ll ddHO HRERE
20sec, FHEE A 2 F+ 10-12C FHm YRR (0.283M Na,CO;, 0.056% HCOH,
4uM Na,S,0,°5H,0) ZEFHE LIRS L. BEMA 2 ABEE/MILTE, B 2-
3min, B ddH,0 BMAREIREH®, X 2 min (Bassam ez al., 1991), & EFZEN
CIps
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=. & X

KIHFE#TT PCR Fif# F Super Tag DNA polymerase (HT Biotechnology); FEA
LHERENESE 40C 3 42C MERANE, MELAHFEZVBELBRE &
RERE, BREESEEAN, 32 2C 5 PCR BHARE, i, & 3-
BB AHE, EH T.MA, T,MT. T,MG 1 T,MC; T 5 5|FBI53#H 50% GC
8. SomaiEEELS. B S mk 3-nRE_EAREEL 5/ G 5 C,
1A 85~ DNA i53%f DDRT-PCR R %, HIEJ7# RNA 748 DNase I i2#, F|H
M| F No.1. No.2 1 No.3 (BERU 1, 2, 3&ESD) SRIF T,MA HEETT
DDRT-PCR, H[E7JEEEEE HEELIE DNA 5HRATHE RNA BE R RER R E, &
1T PCR thE1B %ML ESE (GEZ 1D, 2D, 3D), FELiFiRrieehls
# DNA 1T PCR R4, MEZFHIFE RNA 5ELL DNase I lRE, HFIHHERR
3| 7443417 DDRT-PCR (£EZ IR, 2R, 3R), HEHAERECTUEAEZ
1R. 2R, 3R #ERMEH, BETRKEMRIE, EEET PCR AITEHETEHE
4 (K@ Z 1D, 2D, 3D), #6°~ DNase I B H R AR RNA /) DNA 1554
DDRT-PCR FIRFEFTEREIBEBME (false positive) o

FFZE#5 ] T No.1. No.2 & No.3 75If01 T,MA ##&, 2 1.25mM, 1.5mM
(5 3E%E Super Tag DNA Polymerase #1T PCR). 3.0mM T [F] &8 7B E T #1T
DDRT-PCR ([ 1B), #ERE RS FHEE, HE 1.5mM BEERENET
A, AHEREMEH 2uM ANTP DUEST PCR, {EREIRAGET, HRBLUERSF
No.1, No.2 1 No.3 4 3/f1 T, MA &, HRTE INTP BE (2uM. 10uM,
20pM. 30pM) i#17 DDRT-PCR ([& 1C), MEFTR, TamAE5 [ FHES, £ 20uM
A1 30uM dNTP M T Al{SEIFRISER IR, 2uM ANTP BE THIRE,

—M&RA 3’ 51 F: S 51F = 5: 1 RBELLA], FEEMNTME 35| FREREE
BiF, #R 55| T EESMERHWIEEE 55| FF7I# DDRT-PCR EY). & 2
ZHE, 95H T,MA, T,MC, T,MG & No.1, No.2, No.3. No.4. No.5 FJE
BB | FHES, 7£ 10 1 WBELEFI T #4T PCR, #HEREER T,.MA BERREREES | T
£ 10: 1 WBERAITRE 2RHTEOETRE, B T,MG k T,MC #ETE"
EHE | FHE, 1100 1 BELAITAEEBABCRE S, | REAEMEEN
5| FME, LIEHEMS|FEELE (B0 2.5uM : 0.5xM) #1T PCR (B2 &



M1 ZRETESH-BESMEHEE (DDTR-PRC) WS BEEHES.
F| FEM5|F No.1, No.2, No.3 SRR T,MA 84 (BLSR
Bl1, 2, 3%RR) #1T DDRT-PCR #, 1* 6%DNA EFBMEHR
#2;W, M B pGEM T, A. DNase | HTE4 RNA HEREARXE
X8, RREREE, D RAEEEE, [TWH RNA € DNase
INRERLEN. B ERTREHREXENTE, PCR H,
SEFRESHNA1.25mM, 1.5mM, B3.0mM, ERETESR
HEHMER1.5mM, C. dNTP BESHRHEABEHORE, PCR +
dNTP iR B 4 Bl B 2uM, 10uM, 20uM % 30pM, S RE T
20pM dNTP FERFRERBER#,

57
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2 A [ T,MN 3| F/iE#5| FiRE L 5% DDRT-PCR REXKHF
&, 7 T,MN 3| F/iEMSI FREWLGIB (£) 5: 18 (&) 10:
14T, 98 T,MA, T,MG, T,MC Ri&E#5| F No.1,
No.2, No.3, No.4, No.5 (B E#HBIKL 1, 2, 3, 4, 5 &)
#2&1&1T DDRT-PCR, i 6%DNA EFRBHEENR,
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EE), ERETTRH T.MA, T,MG & T,MC, EETEZERSFHE, EHS
FIFERReAs AL FIRE, H#E 3 81F: 5 31F =5 1 (EE) #10: 1 (GE) &
EEHEIT, BEARMN T,.MA RS | T A& FTE £ AR R BB LR,

RS AR EE RS, FIF 3-3]F T.MA, T,MT, T,MC 1 T,
MG 43R 5'--HE ERR Y25 | T4 A 31T DDRT-PCR £, 7 6% DNA
THRBEESE, BERERES (H3), BT T,.MT fITEE#S FHEGET
DDRT-PCR B4 EEESHES FEEY, Kk T,MC fl No.3 EH5 | FHEET
DDRT-PCR E(LztAEES, Heps| FHEABRETHITERL 50-80 KT (&
LEMER 30 KR ES); BESE 5| FHEEEE —BHE (BHRmRE—K
FEAEASD), R TYELASE DNA #ERERER TR, BTRES T,
MA. T,MC %1 T, MG #BIgETFE#S | FHEEFT5# DDRT-PCR E¥)H 179bp-
676bp cDNA FEZ A pUCIS B§R, Ll PCR HER{EAMEER, M kES
EFRBEE AN DNA FERAOERRISE, MERSHT4AEZE DDRT-PCR £
rA R FEME,

m. & B

g% DDRT-PCR EETRENARELIE DNA 55, 5| F&E. 3-5]F/5-5]F
JSEELEB] . PCR REFTFIRY DNA B4 MMELE (Haag and Roman, 1994) . HERE,
peme ey INTP B, AHFRE 3-5| FRIREBERIR Liang F AR 1993 2
WIEIFE R, A anchored oligo-dT 5|F T,MN HE— Bl FrE % — Eis s
N Ffigfit, B8 — Eig A Bt (degeneracy) B &, Ll T,MA, T,MT.
T,MG 1 T, MC 4 BERIFEARY) 12 € T,MN 5|F (Liang et al ., 1993) . {EFHE 3
FiR, TMT FITREHS| A& €T DDRT-PCR EYPIRF MBI, ER
feRHA T,MT BiR(L5[F# (degenerate primer), HEEHT | Fry R — R R
HE M, TSRS —EREAS 4T, SEER RE% R ERKS mRNA
poly A BRHIERERR, iERA— mRNA REEFERNSETEA/N cDNA; Hit
HE T,MA. T,MG. T,MC 25| FHHERRFEAE, Liang FALEH
33| FRERK 5-& Hind 111 [REIBYIEMA H-T, A, HT,G, HT,C D#EE
T.MN M B A BEGETHMANBHEE, WK T,MT KA oligo-dT 5%
TI2E MRS (Liang et al ., 1994), TIZE 5'-SREHEE | FHBRIBRIRER Liang &



60 5| Fi%9%8 R R FEAR T AR B B 7R BE LD & 22 BT R iR — TR & BE R R PR A U

B3 T,MA, T,MT, T,MG f T,MC % 3R+ HTEAEMS|F
(BlL1, 2,3 4,5,6,7,8,9, 10FF) tHEHETT
DDRT-PCR #, # 6%DNA EF BHEQHRLSRARANEK,
S AEEEETEREENENEARENE—REAN
4, M B pGEM DNA L,
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TWMG TmMC

 M1234567891012345678910M
(WI'

Pardee I#JBEFRILEFFHA 6-mer. 7-mer, 8-mer. 9-mer & 10-mer EH#5 | F 8 T,
MN #H& I3 DDRT-PCR BU#ERATRAT, HEREHSFIATEE 150, 38, 10, 2,
/NEE 1 RIRERE, (BRER EAIRIM A8 E] 0. 0. 0. 20-30, 50-100 AUZEHE B,
HRA 10-mer FEHE5 | T UAEZEMS | FEUZHFFTIR]E 34 EEREAYSE K ECE (Liang
et al ., 1992; Bauer et al., 1993). #EZR Liang 5 AN ZIRIBHILEYHAAE 15000



62 5| FRIER K EREIUE RS T E Y 2 2 REER RIBSR—R & BE R R R R

& mRNA KEH5 TR 6% EFBIEEI 50-100 HREFH#ERATFH T.MA, T,
MT. ToMG. T,MC 2 —-+fEE#5] 7 SE1F] F DDRT-PCR ik 2 F B &
mRNA #%#£, {8 Crawford £ AHIZES T,MA, T,MT. T,MG. T,MC #_+H
TEEHE | FAEAIEREEE 50% B9 mRNA KB, MU+ EEEHES | FREHEESD
HAEIEE 90% B mRNA &EE (Crawford et al . , 1993), 54 Bauer F AHZEEFI A
+f T,MN (M £ dA. dG B dC, N B{EE#HE) H_+EER5 | FHE (F
—HETHER 120 653E%), RAURFTE2REEM mRNA KEE (Baver ez al . ,
1993), MAWRIREFTES VIEEMS | TH T,MN HE&F I —HETEN
¢DNA &, HESRTEREHLGE . FEE 2 /BRAE 3 51F: 55]1F =51
8 FF H {52 DDRT-PCR FIL B, (BRIREHP T.MG fl T,MC BJ Tm 85, Ff
LATE 3' B3| F: 5 B[F=10: 1 B5BES, SEETRERKS |7 2R B
Mg 1 T,MA B Tm 88, SEERS 3’ 51F/5 5| FRELFIDT EHE
HAEE LR E,

—¥EST PCR By, $EBETEBESELR 0.5 mM-2.5mM, K PCR FrgElt B E
2| FHRE . MR PCR EYWIERHEE . PCR EVIE —M. RS primer-
dimer (FAAFHIEH ERIZLOI M O EREERS |7, BTZHRFELE) . BiEk
R EEEER (Innis et al ., 1990), —##E1T PCR RFRA 20 pM-200uM dNTP i
B, SER INTP #ERBEHI PCR ME —MAEEM (Innis et al ., 1990); TI—#
DDRT-PCR W52f# A 2uM dNTP #/E3#1T PCR, {EtiFHLE DDRT-PCR #H 20pM
(Lohmann et al., 1995), 50uM (Welsh ez al., 1990) 2 200uM (Sokolvo and
Prockop, 1994), ZtH7EHrAIZEIH 20uM TR B 3BT

—f&1% DDRT-PCR &5 S o [¥S] dATP, EARHZFIREL DNA 8
TRRERIEREHE R A, BRERT TERELE RS EBREN, EENERE
B4R (U 1hr BNRERG), MEEGEKAT EE AT UEENT, SRR mELL
FRRSRRETRE, ERFPHEEFBE LEKEZRNERIEMHE —HE
R RS SEEHMAANETOEE, EREEFBE LEBERRREHT, UE
BIRyHEE RS HE —M 5 (Sanguinetti ez al ., 1994), BERRWIXEFLER
LI$R# /5 54 DDRT-PCR fi[EM . #8%¢ (Lohmann et al., 1995); EPEREIERTER
gLE| S HBREE T RS ERERE, TFIRES BRI ERNERMRRIVESR,

i

A, & E i

AHFATEGERERZ B GRBCARES gEARMBEMHERE, FIEE
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Effect of primer choice and reaction buffer component on
the banding patterns of differentially display RT-PCR
(reverse transcriptase-polymerase chain
reaction) in Chinese kale seedlings

CHIA-HUI PAl AND CHING-LONG LAN
Department of Biology
Fu-Jen University
Taipei, Taiwan 242, R.O.C.

ABSTRACT

A DDRT-PCR (differential display reverse transcription-polymerase chain
reaction) protocol, starting with total RNA from young Chinese kale seedlings, used
an anchored oligo-dT primer to anneal to mRNA at the poly-(A) tail for reverse
transcription, and a subsequent PCR with the same anchored oligo-dT primer and a
random 10-mer primer, was developed to differentially display Chinese kale mRNA
species on a 6% DNA sequencing gel by size. DNA silver staining was used to quickly
display the DDRT-PCR products. For the PCR, 20 uM dNTP and 1.5mM MgCl,
were optimal. In addition, pre-treatment of total RNA with DNase I was necessary.

A gel profile of 50-80 bands was normally displayed when, together with a
random 10-mer 5'-primer, with one of T,,MA, T.MG, and T,;MC 3’-primers was
used, but not with the T,;MT series.
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RbTIOASO, ERHBEB THH

B AR AR e

RV SR

wm E

A, BFAARTECREHER, EITHE RbTIOASO,
(RTA)BLEH) LA001 &8 Tt s R EARRfR . BIRERETT
m=FF, RTA BB FHEZFRLAENRG, EEHSEHERER
B (T.~800 C)LA LR @R EE, EfERREFEAPSEE T
“BRAE (soft-mode) "Hi¥R, ERFHLEHAFRREREERIMEGR
PEERE, HRHERRIEA(E, FIEEE order-parameter (polarization)H
fluctuations BEBITENERN, HEFREFIERFALMUK
(Debye anharmonic approximation ), JEfEE HIE THZE o, (0) =
44.28 GHz, S57EHE 0=300 K B IEFFHARE A=6x 10K
&=,

BAGERE: MAETLERS: BE T, BEMER BFERFELM
o

—. fi§ 7r

RbTIOAsO, 2B IEMR M LRE T, A4 FRB M7 TIOX"04(M =K,
Rb, Tl, Cs and X =P, As ) saBREFH—E", EHENAEBERER 1.06 &
1.32um SEESIEOEIRA T, BREAIERELSBOEA L, BERRNERIIERE
EHEZA, BESFERARESEE (SHG) RAB2EIRET (OPO). 5%, RTA
S RER I ERZHRE, ER—ERENAETD, KTIOPO, ( KTP ))Z2H
hEgE L, ERRERREEERNSE"". B2, B KTP FHEBMBRIEER
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Hr 4.3 B 3.5um FREFENE, UERHE LB EBRVKIEREREANBEE, 18
B2 T, RTAERANNAEREFHRVEHRE (0.35~5.3um), i3 L5542 RTA &
KTPEFEBIEAR L ERERM., RTA WESEMSEE X 800 T, =iRA,
RTA EfEM, SERERLHBIEEE Cv(mm2) A% R Pna2(Z=8) AT
BIER R, HEEERSAEEERN TiO/NEHEM AsO, NEBATHK. RS
EERWXT, HRTIEERNERMHER, RTARE (001) BT AAEE
FHEZR (BEH). PEE (BHE) MRENHEKER, THERTAG, B8TF
“ERBL” BUIRR.

Z. hETHSNERRE

BTSN S BT BRI MBS . i R TEE R BERAS YA E
gufierh, HEETARR FERMES, HBEERMBEENE0.01~5 cm "2/ (
Fi SAEAEHRIFIAE 10~1000 cm ' Z[E ), L/(_Fﬁﬁ AHH R,

‘BT BRI RAEROIRE), HP TS BBE T (acoustic phonon )FIEE T
( optical phonon )FI%E, BT Eiedatd R FESIFTEAIRENE, SEERE A, M
%%?EUE?ET%&%F}?%EEEE@HE%EP atEMEIEE AT E £ FIREMR, S8R E,

B EHmGERMER, §RKIRENR, MMELNRE FELEANSE S
i Li@ﬁmﬁfﬁ/ﬁﬁﬁ WHEIRRE FREE, EXASE&ER,
AR TR ELFE “&8 Y RE, LREESEEER g E S EENE,
EEEMEBETHSER, Eb, EP “& M) BENAR, FETHESEEE /N
BRPASISEE (FEAER) fmi(ElE, 45 5B Lt m BT iss R K st FE T Bl
54,

W8 EERATER “EHHEEEE" (free spectral range), AIFH “HH
FERERE”, WLURER FHEENMEER, RFBHTE AREAFNEEAS HRATE

o _ mc
2d = mA Y (1)

B d RFES T ZFRIERE, v BASDEHES, m RTBEm BT, B
HHMERE, EMEANE, FEEHE v, K v,, MREMEMEIR order (m F
m + 1) EERESEMETEE, A (1) X, BfE0E

2d = me/v, (2)
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2d = (m + 1)c/ v, 3)

B 3) - (2), &FfIE
(4)

UV, — U = Av = i(GHz)
B Ao R “EEMERIBE (free spectral range)” s
=S REBARE

RbTiOAsO, (RTA) B &2 F tungstate flux MR B, Ll X-ray B5RKHEE
Ehf, FHEEZEIEY (100). (010). (001) GERYETRS. SEBEA/NE 6.5xX5%2

Mirror-
Laser
Interference filter
|
|
| Pinhole | Prism
I ! /
Telemeter Fabry-Perot I L, / Ly |/ te

A—1l

i a2
—=|Amplifi
s 3“ ! ‘ Cold—hca:dj |

v e A v
|

Analog-TTL I I
I I DRC-9IC
L _>|TD%RI— —————— =
Dell 486p/33

W1 FETARISCHNRBEENR.
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mm’, FEHIBRREZFH FAHERIEZ T, LR B EERTEET

BEEENE 1 iR, EFHERET coherent AF]HY Innove90-3A B G 8 FE 5T,
IREFEFA, #rFl, W FH, YR, Burleigh 2AFIHY five-pass Fabry- Perot T#{%&,
TR AR, LEMFEE (PMT), X FEEHE#H (Photon Counting Electronic
System) , ERERZEER. BEEHR 180°HETHERI A, BROBSHHES 7
(XU) Z, “U" ZEEMUENBSHOERIEESBE (RE) A,

BFEAESERE 514.5 nm, FEFROVBLRENS 100 mw, RFEE
aade (001) BFF AR BRIFIFE AR (001) HEERTF (LA) 7EERBELE
Sio WHRGDGERESFEREN R, BEEEP S CEERNEMESE (Nh S
#8) &, H#A Fabry-Perot T#1#. M Ramp-generator 5K T15 48 41 810
T, RERENRPMT L, FEZTHSBEETRER, RMTUESKEEIESY
R

RTEERTRIEERERRLE, BARABRTYES T ZREI00ER 4, 5K
S EBRER, BN ETERECEEESFBSNEER, haEREY
ETEH, WFRE FSR #9K/N (25.17 GHz), BEBHEE, 2ESEBERSEE
F, B BEERINZAZK 850 C, BEMRIELEMA K-type BVE B HIN,

BTHEEMELTGERVMIERPLE, BRMEEINERHE, fIPTEEER
FREATEN, il B MR B A A R sk BT

UPCUC'—'(Z)

(o* —xwg) + T 1-— el*ﬁ“”f” (3)

w MIT HRREFHEERLE, 0 BABUEELE (suseptibility
constant), & BELZEFHE, T T SEHEE,

S(w) =

M. BREEIR

FHEBRATREIR (001) MUSEEFOLRE, HIMBCSERERDAMAETERE
SRR R (A 2 Fom) . B 2, BERERESTHIREE, ERAEHN
78R (5) FRGLRETRS . ERGIAERES, ATLEESERER, B FHES
(wo) « FE (D) \ BREILE (y,) IERBENE, Ko, BFEE, $EREK



811 °C

(o o] 0 0 0 ODOOED OMOAD
@00 D000 © O OOO00 0 ODEDDO GO0 OO 00 O

740 °C

Intensity (counts/sec)

1.2 1.4 1.6
Frequency (cm™)
M2 RTARILA (001) fETHES KT, BFHERTHMAIR

ERAFOMER, DRRNRONE, MEKULHF (5)
BT R A B AR o
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AUBRFRIE AN 3 FiR. £5 T flist RTA RUREE & (coupling), FFIREZFH AL (
fitting ) FrEIBAVRIEE CGEESBIERRE) R FHE, KAEEASETH
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$EER w, (T). FBEBTHANERTE R F AR AR BRAES, JEREETH
$EER , (T) BB EAYEEBGRA LA TREFIERFBIMR ( Debye anharmonic
approximation) R’ :

w.(T) = w,)[1 - A6F(Z)] (6)
O BEFFRE, EEMNF B2EFREAREA",

8/T

CANE 3 u’
T) = @ity | T Q

3 (a) FHEFRERFBLAERERTEIER, NEHE RTA SEMASLE
800 T (FEAEAXMFEMESE,) #IFEM, $28 0 =300K, o, (0) =44.28 GHz f1 A
=6xX 107K "#HA (6) RHEtE, FIEIERESR FHEE, E 3 (a) AILLEEE
Ff7 500 TRy, FrflE2RsEZR BB AT ERERE B 7S, URER T
MR TERIZE IR , M7EH] 800 CHREREARE, H—EeRpiEM K, ERLIEE
B TR R A ENHRAESEERGERANR L (REESE)., L, EMER
£ RTA 7£ 800 C BF, SE#HEMAE, W EHEHBHESEHE2ESHBNIES
*HO

F

E i

RTA (001) #HEE&EFayERE4,E, RREFEARHERE, EEREREH
LR HARRE, 78 3 4, WLUEREED|, EEEPEE N 800 TR, BHA
TS, B (6) NFTEAMENIERSR FHEE, AJLIERIERK 500 TH,
Bl 8 BB il M e S R THRE, WL BRNA AR FiIERUERI R,
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Study of Acoustic Phonons in RbTiOAsO, Single Crystal

Z. -G. XUEANDC.-S.Tu
Department of Physics ,
Fu-Jen University,
Taipei , Taiwan 242, R.O.C.

ABSTRACT

The longitudinal (LA)(001] Brillouin back-scattering phonon spectra have been
measured as a function of temperature (25-871 C) for RbTiOAsO, (RTA) single
crystal. As temperature increase, the acoustic phonon frequency shows a strong
softening (negative coupling) and reaches its a minimum value above the ferroelectric
(FE) transition temperature T,~800 C. Correspondingly, the half-width of phonon
exhibits a broad maximum (near T.) that was attributed to the order-parameter
fluctuations . The Debye bare phonon frequency w,(0) Debye temperature @, and
anhamonicity ~were also obtained by using the Debye anharmonic approximation.

Key Words: Brillouin scattering; acoustic phonon; ferroelectric transition; Debye

anharmonic approximation.
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Asymptotic distributions of the Estimators of the
Vinnman Type indices for Non-Normal Processes

SY-MIEN CHEN
Department of Mathematics
Fu Jen University,
Taipei, Taiwan 242, R.O.C.

ABSTRACT

Vinnman (1995a) proposed a family of process capability indices
C,(a,b) and natural estimators assuming the knowledge that the
measurements of the process follow a normal distribution. Vannman
(1995¢) derived the asymptotic distribution of the natural estimator
under normality. This paper examines some asymptotic properties
related to the natural estimator of the Vinnman family of indices
C.a,b) under some regularity conditions. In addition, the

assumption of normality is released.

INTRODUCTION

Process capability analysis has received extensive attention since Burr’s (1976)
pioneering work in applications of statistical process control to continuously improve
quality and productivity. Process capability index, a unitless measurement, is designed
to compute the capability of producing conforming items for processes. It is a function
of the variance of the process, allowing one to compare the capabilities of different
processes even when they are in different measurement scales.

Much research has been performed regarding process capability indices of C,, Cy,
C,, and C,,, . Notable examples are Sullivan (1984), Kane (1986), Chan et al.
(1988), Chan et al. (1990), Clements (1989), Chou and Owen (1990), Spiring
(1991), Rodriguez (1992), Pearn et al. (1992), Kotz and Johnson (1993), and Chen
and Hsu (1995).
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For processes involving symmetric tolerances, Vannman (1995a) proposed a
superstructure of indices involving two auxiliary parameters, defined for the case of
two-sided specification intervals. Such a family of indices generalizes the four basic
indices, C,,Cu,C,, and C,,. . She suggested estimators of the proposed indices, and
in addition to analytical derivations of the expected value, the mean square error, and
the variance of the estimators. Under the assumption of normality, Vinnman and
Kotz (1995b) provided an explicit form of the distribution of the estimated indices
C,(a,b) of the Viannman family of indices C,(a,b) . The above results are not
analytically tractable. Also, Vinnman and Kotz (1995¢) discussed the family’s
asymptotic expected value and asymptotic mean square error.

In general, if the measurements of a process characteristic follow a non-normal
distribution (such a process is called a non-normal process), the validity of any process
index or if any index should be calculated remains doubtful. Unfortunately, non-
normal processes exist and may frequently go undetected. Some large-sample
properties of process capability indices apply to a wide range of process distributions,
thereby contributing to our knowledge of behaviour of PCls under non-normal
conditions. Hence, with a clear understanding of their limitations, asymptotic
properties can provide valuable insight into the nature of indices.

This paper concentrates primarily on some asymptotic properties of the class of
estimators C,(a ,b) of the Vinnman type indices C,(a,b) for non-normal processes

due to the reasons given above. Concluding remarks are finally made in Section 4.

NOTATION

X—2>Y:X converges to Y in probability.

L i AL
X — Y : X converges to Y in distribution.

X B, Y ¢ X converges to Y with probability 1 .

(W,,,,W,,) : A sequence of random vectors.
(V..»»V.) ¢ A sequence of random vectors.
sy = E(X-p)" : The £” central moment of the underlying distribution G .

1, if >0,
g1(a) =1 ia<o
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E=0O(n?, n—=>o:|k/n?| remains bounded as n — .
MAIN RESULTS OF THE DERIVATION

Let X,,...,X, be a sequence of i.i.d. random variables of measurement from a
process which has distribution G with mean y and positive variance ¢” under stationary
controlled conditions.

Let L , U be the lower and the upper specification limit of the measurement of the
U-L

characteristic in which we are interested. Denote d = =3 half the length of the
e e i eag U+ L . " .
specification interval [L, U]l; M = T the midpoint of the specfication interval ;

T is the target value.
The Vénnman family of process capability indices C,(a ,4 ), which depend on two

non-negative parameters, a and b, is defined as follows (Vinnman (1995a)):

d-alp—-M|
3Va+bo(u-T)

C.lash) =

where a ,6 = 0.

It is easy to see that C,(0,0) = C,, C,(0,1) = C,,., C,(1,0) = C, , and
Cl1.1)= Cor

When both the mean x and the variance o° of the measurement are unknown, an

estimator considered is defined by

8, )= BN =M
3JS +6(X,-T)
R __ixi Z": (Xi__xpu)z
where X, = ";1 , and S2 = "l_n", be the sample mean, the sample
variance, respectively.
Theorem 3.1

C,(a,b) is a consistent estimator of C.aad)

[Proof]: Since C,(a,b) is a continuous function of S? and X, , by the fact that

P —
S2—s?, X

n

—P',u , we have C,(a,b) LS C,(a,b) , therefore C,(a,b) is a
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consistent estimator of C,(a ,5) .

Lemma 3.1

a) I (W, W,) —= (W, W), and (V.o Vi) —= (Vy,o, V),
then (V' Wosyo, VaWa) — (V\ Wy, V,W,).

b) f (W, ,W,.) . (W,,*,W,), and g is continuous with probability 1,

then g (W,,, ) Wa) —= g (Wy, ", W,).
[Proof]: See page 24 of Serfling (1980).
Lemma 3.2
If p, exists, then

a) (X,, S, is asymptotic normal distributed with asymptotic mean (x,s”) , and

asymptotic variance prif where

2

ag H3
2= | |

M3 Ms— O

b) (X,,X.,5,) is AN((se, 16,6 , 2= ), where

2 2
ag g #3
E»_ 2 2
- g a M3 3
4
3 M3 HM_O

[Proof]: a) See page 72 of Serfling (1980).
b) By Lemma 2.5 of Chen and Hsu (1995).
Lemma 3.3
a) Assume that X,= (X,., ***, X.) is AN(p, b, 2 ), with 2 a covariance
matrix and b,—> 0. Letg (x) = (g, (x), -, g.(x)), x= ( I.,°*",x;) be a vector-

valued function, where each component function g; (x) is real-valued and has a nonzero

differential g, (i, t), t= (¢, =", ) , at x=p. Define D= [Q& x=p.:| . Then,
m Xk

ox;

g(X,) is AN (g(p), b,’ DZD").
b) Let {u( n )} be a sequence of m-component random vectors and b a fixed
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vector such that v'n [u( » ) —b] has a limiting distribution N(0, T) as n = . Let

f(u) be a vector-valued function of u such that each component f; (u) has a nonzero

differential at u=b, and let 9—‘2"—5‘“—) be the i, j th component of ®,. Then v'n {f(u

u=h

(n)) —f(b)!| has a limiting distributing distribution N(0, ®'T®).
[Proof]: a) See page 122 of Serfling (1980).
b) See Theorem 4.2.3 in T.W. Anderson (1984).
Theorem 3.2
If p, exists, then

N (0, UAZ) , if F"#M’
V7 (Ca,b) - Cya,b)) —=~ (W, W.d o
B - 272°? lfp.—M
3Va'+b (u-T) 6 [o°+b - (-T)]?
where
2 .2 2ab(T"y)62—aF
2 _ a‘s ~ 3
% = o rb(T =] T M ) ey —;:)2]%]‘3(“*5)

bz(T—}l)zdz“b(T_#)#3+(#4_04)/4 2 -
| [+ 6(T - )T Jeya.)
d(W..W,) ~ N((0,0) , HS"H'), wh H—[ a &0
A s it s where H= |, ser bu 1)

[Proof]: Define

_[y_alM-ul d
g(ug'v) = [1 d ]3\/y+b(T—u)2’
foru € (L,U), v >0, thenC,(a,b) = g(u,0") . Andv'n (C,(ab) - C,(a,b))

= Wnlg(X;:8.) = g{p 6]
(I)WhenL < p<M,L<u<M

Since

[, _a(M—u) d
g(u,v)—[l p ][3\/v+b(T_#)2},L<u<M,7J>0,then
og _ a _a(M - u) bd(T —u)
a“(u’v)-3«/v+b(T—u)2+[l d ][3[v+b(T—u)213/2]’
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and

a - u d
o tum) = [1- =G~ () |

Moreover, if one define

D= (.5ul..)

then D # (0, 0), and by Lemma 3.2a and Lemma 3.3b, we havev# [g(X,,S,?) -

g(p, 0] —L'*N(O, 651), where

_ a’e’ 2ab(T — p)a’ — au,
s =DXD = T 96+ b(T - #)]+[3[a *+b0(T - p )2]%

[b (T #)262_1)(-1—- #)#3"'(#4 a)/"‘] ( b)
[o®+ 6(T — p)*F

]C,(a,b)

B ale’ 2ab(T — p)o® - ap,
=97+ b(T - 362+ b(T - )1}
BT - u)le’ = b(T - wps+ (py=0*)/47 .
[ Ty (TS ]c;(a,bL

PWhenM < u < U, M<u<U

]C,(a,b)

)] + sgn(M —p)[

Since
_[1+eM—-u) d
is a real valued function and is differentiable for all « € (L,U), v > 0, then
Qg(u o) = - a [d-a( M+ u)]b(T —u)
3w/v+b(T'u)2 3[v+b(T—u)]%
and
Qg( )=—[d+a(M—u)].
80 "0 6Ly + (T - u )

Again, define

o2

_ (o2&
D“( v B0

du

:),
#aa
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then D 7 (0,0) , and by Lemma 3.2a and Lemma 3.3b, we have Vnlg(X,,S,}) -
g(p,0%)] “‘I:‘“'N(O,aiz), where

2 _ . a’s’ 2ab(T - #)a‘z ~ @ty

Ga2 = D 2 D = 9[0_2+ b(T —_ ’1)2] - [3[0_2+ b(T _#)ZJ%JCp(ayb)
B (T = p)'o* = b(T = p)ps + (s — 6)/47 -,

v S Ty J¢(a.6)

3 a’s® 2ab(T = p)a® — ap,

96+ (T - u)’] + sgn(M h”)[

3[e*+ b6(T - u)z]% ]C,,(a,b)
4 [bz(T — )’ = b(T — pwps+ (u,— 0*) /4

At e
Qlfpu =M,

Vn(C,(a,b) - C,(a,b))

_ _alpg-X,| d ~ d }
‘ﬁ{[l d ]3\/si+b(7,,—T)’ 3vVe'+b(u-T)
___ain|p-X,|

3/s2+86(X, - T)

_ w/;dei—oz+b[)_(f,“pz—ZT(f,,'-,u):H
3VS +b(X, - TV +b6(u - TS +b(X, - TV +vV + b6(u - TP

Let

1
Vbn VZn = — ’
( ) (3«/Si+b(X,,—T)2

d
3VSi+6(X, - TVVo +bo(u - TR/ S+ b(X, - T+ + b(p - T)*))’

(Wi, Wo,) =Vn(a(X, - p),6[-2T(X, - ) + (X2 - )] + S2 - o?).
Since S, —f—"o and X, —Pb,u , imply that

P 1 d
(Vl,.: Vz:,)_'

3Va + b(u - T) 6l + b(p — T))3)

Define h(u,v,w) = (au,b[—2Tu + uv] + w) , which is differentiable. Then
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(W,,, W,,) = vn(h(X,, X,,S?) = h(u,p,06°)). By Lemma 3.2b and 3.3a,
h(X, X, S,)is asymptotic normal distributed with asymptotic mean h (pyp,0°), and
asymptotic variance H2 H%)

Hence

L,
(Wln’ W‘zn) —— (Wls Wz) ’ where (Wn Wz) e N((O:O), HE‘HI) ’ and
a 0 0
bv — 2T bu 1)
By Lemma 3.1 (a),

L
(V,W,,,V,, \W,,) — (V,W,, V.W,).

Define 7(u,v) =— |u|—v , then (% ,v) is a continuous function of (u ,v). By
Lemma 3.1 (b),

P (VW VaWo,) ——r (VW V,W,).
Recall
r(VanIn! VZHWZH) = \/—;(Cp(a !b) - Cp(a !b))

and

AW Vel = s |bv(V;:|— TY 6lo'+ b‘f;d— Ty
Therefore,

Va(€,a,b) = Cyla,b)) = == L‘f}il_ Y  6lo*+ X;d_ Ty
Lemma 3.4

Let X,, X,, '+ be a sequence of i.i.d. random variables with distribution
function G . For a positive integer £ , let @, be the £ moment and g, be the k™ central
moment of G , let a, be the sample £ moment and m, be the sample &” central

moment. Then
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w.p.l w.p.l
(1)12& Qpy My Hi

1
Ek(k - 1)#(1-1)#2 - k#a

(Z)E(mk)_#.s: n +O(ﬂ_2)ﬂ—“°°

2
_ n ; . ; ;
3) M, = (n —1)(n —2)™sisan unbiased consistent estimator of p,

_ n(n’—2n +3) B 3n(2n — 3)
WM, = (n=-1)(n-2)(n=-3)"*" (n-1)(n -2)(n
consistent estimator of p, .

[Proof]: See p69 of Serfling (1980).
Theorem 3.3

- 3)m§ is an unbiased

2
8] o . . - a =
o’ is a consistent estimator of ¢4, wher ¢’ = oT1 + 627 + sgn(M - X)

2abAd — a NI; b*A% - bA M;’ (% — 1)/4
—Sib(a,b) 4 S, 5. C2(a,b)
31+ [1+82°F T
A= _XS”—+T , and o2 is defined in Theorem 3.2.
[Proof ]: By Theorem 3.1, Lemma 3.4 and Slutsky’s theorem [ Loéve, M.

(1978) 1.
Theorem 3.4
C‘p(a,b)_cﬁ(asb) L

- =N (0, 1)

UA/‘\/;

. - cp(asb)_cp(a,b) _ C,,(a,b)—c,,(a,b)ol
[Proof]: Since W = CWNE s by Theorem 3.2

and Slutsky’s Theorem, the result follows.
CONCLUSIONS
Another estimator of the class of indices of C,(a , &) proposed by Vannman is given
by

d-alX,—- M|
3./ 8 +b(X. - TF

Cp.n—l(a ’b) =
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S V32
§i Sz_;g(x" X.) lear] A _ [n—=1x n-1
whete 8,5 = 5. Clently, €,,.la,b) = —';I—C,,(a, . b)

n—1
(Vinnman (1995a)). Hence, all the asymptotic properties of C,a(a,b) are
inherited.

Since Vénnman family of indices generalized the four basic indices, C,,Cx,C, ,
and C,, , the results in Chan et al. (1990) and Chen and Hsu (1995) are special cases
of ours.

Pearn et al. (1992) pointed out some undesirable properties of C,. if the target
value T is between L and U , but is not equal to M , the midpoint of the specification
interval. When one has a two-sided specification interval, the case when T = M is
quite common for practical situations. Hence, in all Vinnman’s papers, she
emphasized that her discussions were restricted to the case when processes have
symmetric tolerances, i. e. T = M . Qur discussion refutes such an assumption.
Furthermore, we do not make any assumption regarding the underlying distribution of
the process measurements except that the fourth central moment must exist. This

makes the asymptotic results derived in this paper more flexible.
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A Functional Approach to Finite Volume-Finite
Difference Method
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ABSTRACT

A fourth order discretization to definite integrals frequently
arising in the study of finite volume method was proposed in [6], in
which analytic approach was adopted, while reduction to surface
integral approach was taken in [4]. We present in the current paper a
functional approach to this method, based on polynomial fitting.
Application to a pure convection equation is discussed in some details,
with general Crank-Nicolson (CN) approach. Stability result is
estabilished and reveals that the scheme is unconditionally stable for
CN parameter in the range 1/2 to 1, and of second order in time for
CN parameter equal to 1/2.

Key Words: Finite Volume Method, Polynomial Fitting,
Stability.

INTRODUCTION

In the study of finite volume method , we are concerned with the equation
U+F.+G,=Q, (1)

and its associated integral form
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a% -ﬂjUdIdy + -ﬂ:FﬂIdy + }U':Gdedy = }U‘:dedy (2)

Here U is a scalar or vector function in temporal and spatial variables. The flux
quantities, scalar or vector, depend on the spatial variables and possibly also on spatial
derivatives. The control volumes form a partition of the computational space. There
exist various methods in the construction of control volumes in the physical space [1,
3, 5, 7, 8]. In the current paper, we will consider only the cell-center type control
volumes shown as in figures 1 and 2 that each grid point x; (or ( z;, y,)) is at the
center of the corresponding control volume £2, (or 2, ;). Uniform mesh size is assumed.

We refer to [1, 3, 7, 8] for details on the background and terminologies.

§ By
P + —o—p—=8—of—e——| } t $ X
Trin Ti-1 T Tiy1 Tmaz

[ 1 one dimensional cell-center type control volumes.

Some discussions in accuracy and stability, of a second order method, can be
found in [8]. We will indicate a neat proof of these while we investigate a fourth order
method later.

We derive in section 2 a functional approach to the fourth order discretization
method [4, 6], via polynomial fitting, and then develop in section 3 the finite volume
methods of second and fourth order in spatial variables. We also carry out in some
details for the second order and fourth order approximations on a simple test example,
to demonstrate the different approximation power. The fourth order method is further
applied, in section 4, to a convection problem with Crank-Nicolson type approach.
Theoretical result concerning stability is estabilished. Discussions and possible

extensions are given in section 5.
A FUNCTIONAL APPROACH TO DEFINITE INTEGRALS

The following two propositions are proved in [4, 6].
Proposition 1 If f € C*'(2) with Q a generalized rectangular domain , then
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(T4 yj+1)

(xi—l.} yj).(mls Yj ).(Il+l ) yj)

.(37:'1 Yi-1)

hz

[ 2 two dimensional cell-center type control volumes.

[ f@)dz = 101(f(zo) + 33 ZH2 L) + Ok, 4wt hDY . (3)

For three dimensional case this yields

J~z+alJ-y+a ”af(x y.2)dzdydz

t-8J y-8+vx

= h,}l_\h (f(-rm Vas zu) +fxzh +fw +f*’ O(Ihl‘)) (4)

Here and in the sequel,

:231, h,=28y, hz=28g, lhl: (h.t+..')'

Proposition 2 If f € C'(2) with 0 a generalized rectangular domain , then for

one-dimentional case we have

Jnf(x) dx



92 A Functional Approach to Finite Volume-Finite Difference Method

= 101[f+ 25 frr ~2£+ fir + OURD)) ]

= 22022f, + fur+ fia+ ORI, ()
for two-dimensional case we have

[ £) az

= 1Q1Lfo, + 55(fons = 2us + firs + Fiogn = 26y + frya + O(h, + h)))]

= BAA020f,, 4 fuas + Fras + fron* Fisat ORI, (6)

for three-dimensional case we have

jgu)m

1
= ‘ N | [fi.j.k +ﬁ(f.‘+1.,-’,k _Zfi.,—',k +ﬁ-!.j.k +.fi.j+1.& - zﬁ.j.k +f-'.;'-1.k + fi.}.hl _2fi.1.k
+ Frgae ¥ 0000, + k¥ £)))]

= %4&[18_](;,;,;2 + f.-fl.j.& + ff—LJ‘.& T _fi,j+l.k + .fr',j-l,k + fr,,‘.hl + fi.j.k-l * O( | h ‘4)]-
(7)

In deriving the above, analytic approach was adopted in [6] while reduction to
surface integral was taken in [4]. We give below a functional approach, based on
polynomial fitting, with complete argument for three-dimensional case. Similar results
also hold for one — and two — dimensional cases, respectively. Compared with the
other two approaches, the current argument, although elementary, turns out to be the
most appropriate one for extensions to nonuniform grids [2].

For convenience, we choose to work with the following formulation.

Proposition 3 [f f € C*'(Q2) with Q a generalized rectangular domain , then
ﬂ:l- dedde = hxhﬁz(ap ik + ayfiote + aeﬁ+l,j.k + asf.',,-l.k + anfi.jﬂ.k
+ abf;.,—'.k—: + a:fi.j,iﬂ) + O((h.r + hy + hz)d) (8)

with the constants a,, a.,, a,, a,, 4,, a,, a,depending only on the dimension .

We derive firstly necessary conditions on the constants via a few test functions.
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(1) The case f = 1 obviously implies
a,ta,+ta.,+ta, +ta,+a +a,=1.

(2) For the case f = x, we calculate the left hand side of equation (8) as

I +8, 2
ﬂ]— xdxdydz = ﬂ%
x-8,

and obtain for the right hand side the following

dydz = zhhp.,

hhpla,z, + a,xiy +a,xm+a,x,+a,x, +a,x +a,x)
=hhph(z(a,+a,+a +a +a,+a +a,)+h(a —a,))
= hlh)ﬁ,(.x,- +h,(a, —a,)).
We conclude that a, = a,,. Similarly, the cases f = y and f = z lead to a, = a, and q,
= q, respectively.
(3) With the quadratic monomial f = z°, we have

_._»,4-5, ) 3 _ o 3 2 3
J]] wdadyds = [[ 20 3 22 8 g = ﬂmz'&? 95 e
8'

hl
_ 2, ax
= hx}lﬁz(‘ri + 12)

and
hhpla,xi+a,(x = k) +alz,+hz) +azl+axl+a,xi+ax})
= hhph(za,+a,+a +a +a,+a,+a)+z(-2h,a,+2h,a,)
+ hi(a, +a.))
=hhh(xl+0+h%(a,+a)).

These imply a,, + a, = 1/12 and, therefore, a, = a, = 1/2. Similar argument with f
= y*and f = 2’ then imply a, = a, = 1/24and a, = a, = 1/24. We then end with

_ 22 20 18

% = 24°24°24
for one-, two- and three-dimensional cases, respectively. Actually, the above
necessary conditions are also sufficient to make the equations (3), (4), (5) a fourth

order discretization. To show this, we need to check out a few more cases.
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In view of the identity 4zy = (x + y)* — (z — y)* and the fact that both the
integral and point evaluation functionals are linear in f, we expect the quadratic
polynomial f = zy to contribute nothing new. Actually, this can be justified directly.

We check the argument below for two dimension only.

5*8 4x8,
Yy dy

z,+8

With f = zy, we calculate the left hand side of equation (8) as
ydy = j

[ ety = [ 5|y = [
(20,5282 = hh(z3) = kS

and also the right hand side as

,24(20(3:3:,) + (i) *+ (23;) + () + (zi2))
= hrh'yﬂ(zo xy; t yj(xi-l + Isﬂ) + xr‘(yj-l + yj+1))
= h,h,24(20 zy; + 2zy; + 229;) = hhyxy;.

This proves the current case.
It remains to check for cubic monomials.
(4) f = z”in one — dimensional case: The left hand side of equation (8) turns into

z,+8, 5 _ .I_4 z+8,
J * dx o 4 x~8
= Lzt +4zio, + 62267 + 4251 + 81 - 2l + 4218, - 6218
+4z8% - 87)

_ _1_ 3 3y 3 I_}li
= (823, +8z5.) = h.(x; + ),
4 4
and the right hand side yields
22 3, Xy goas, 1 3
h'.z(24'ri + (xi hx) + 24(1'.' + h;) )
2
= B2+ L @2l 6zh?) = (2l + T,

These establish the proposition for the case.

f = z’in two-dimensional case: We calculate for the left hand side
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Y8 [x+8, y,+8, 2 :
[T dnay = [t + S dy = byt + 5,

4l

95

and for the right hand side,

_ 3 _ 3 3
h,hy(%xﬁ (e, — b )+ Lg% B Y ot

;
24 )
20 3 3 2

4z} +6zhiy s xh,
24 T T ) = kel ).

= h.h (54
These justify equation (8).

Finally, we consider the cases f = z’y in two dimension and f = zyz in three

dimension. (5) f = x’y in two-dimensional case: The left hand side reduces to

y+8 [x+8, y+8 h 2 . h 2
J o) ydudy = |7 Ny dy = hh(z+15)y,
and the right hand side yields
hrh 2 2 2 2 2
420 iy + (z + h) gy + (2= h) oy + 2y, + ) + 2y, — By))
 h.h

(20z%y;, +2 xiy; + 2 hiy, +2 ziy;) = hh (20 +

ﬁ)y,--
The desired equation (8) then follows

(6) f = zyz in three — dimensional case: We simplify the left hand side of equation (8)
to get
z,+8 [y +8 Px+8,
_[ 76J. “J xyzdxdydz = (x:h )y k) (zih,) = Rhp (2:3,2),

and note that the right hand side yields

%i-(lgxyjzk+y}zi(.r ¥ b + = ) el + B, % g )
+x-y,-(zk+h + 2z, —h.))
h,h h

=5 Bzyzn+t2zyz+2 zy,z+2 7 ¥;ize) = hhph (xy2.).

We conclude therefore the discretization in Proposition 3 is exact for polynomials
of degree less than four.



96 A Functional Approach to Finite Volume-Finite Difference Method

A FOURTH ORDER FINITE VOLUME METHOD

By application of equation (4), we obtain the following two discretization schemes

for equations (1) and (2).
FV2 Discretization:
(Ui, + (F.)i; + (G,).; = Qi + O((h, + b)), (9)
FV4 Discretization:

200U, ; + (U iy + (Ui + (Ui + (U +

200F, )i+ (F iy + (F iy + {Fpdiya + (P

OCE: Yy ot WYy » F 0B )i P T s F LB )i

= 200Q.)i; + (Q.)ici; + (Qu)inr; + (@) o + (Q)iju + O(( B, + 1))

To demonstrate the different approximation power of the two discretizations, we
consider the following simple test function
u(z,y) = x>+ 2zy + %,

and its integral
ﬂu(x,y)dxdy = J]‘(:t:2 +2xy + y*)dxdy
nll n«

on a single control volume 2,;, = [z, = (h./2),z; + (h./2)] X [y; = (h,/2),y;, +
(h,/2)].

We set (xz,y) = (x;, + &, y, + 7) and calculate the above definite integral as
follows.

J- (x> + 2zy + y*)dzdy

fe]

= F,, i((xi +8) +2(x, + &)y + ) + (y;, + 5))dé&dy

hovs _hiys
(Ii+2) (-35.' 2)

:ﬁh( 3 )dr

i |

2
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(z+ 2y~ (2 - Byt (4 By (5 - By

+2 2 I z )
h h
A A Fr=ln=Fr
*j;a(( =5 - )
(et » ) afang)an) o B o)
= z:h,h, + y k. h, +%+%Jj+ 2xyhh,

= hh((z}+ 2z, + 3) + 75(h2 + h2)).

While the FV2 discretization of the definite integral yields
hoh (' +2xy + 3., = hoh(x}+ 2z, + 3),

the application of the FV4 discretization, together with the fact that
u,=2x+2y,u,=2y+2x,u,=2,u,=2

then results in

1 1
hho(a7 + 220, + 37 +54QRL +282)) = hh,(2}+ 220, + 37 + T5(R2+ £D)).

Comparing the last three equations, it is clearly seen that the fourth-order
discretization is exact for the current integrand, as it should be, and the second-order
discretization produces approximation error of order 2. Further application to a pure

convection equation is given next.
LINEAR STABILITY

From the derivation in previous sections, it is obvious that the FV2 and FV4
methods, as in their simplest form, are, in general, both first order in time, second
order and fourth order in space, respectively. To investigate the Von Neumann

stability, we consider the Pure Convection Equation

U, +au. =10
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and apply general Crank-Nilcoson version of the FV4 method to its integral form

Ju, +fa u, = 0.

We begin with a consistent finite difference approximant

u;” ~ uf — ujs + 8 ufy — Bul + ul,
+ | a =0
a h: n

12 A,
and apply the FV4 scheme to obtain

FV4-CN Method:

22} + win t ull  22ul + ul, + ol
24 24
lh’l 1 n+ n+ nt+ n+ n+ n+ n+
+ 1; W 24 (a((=22u% — uits — uin)) + (22455 + i + u2) +8(22 will + u'l
+ H?H)

- 8(22ui +ui" + ul)) + (1 - a) ((—22ul, = uls — uly)
+(22ul, + uly + ul;) + 8(22uly + uly + ul) — 8(22ul, + ul + ul,)))
=),

Proposition 4 If the CN parameter a satisfies 1/2 << a < 1, then the FV4-CN

method is unconditionally stable.
The symbol, or amplification factor, is calculated as follows

g2+ +e”)-(2+e"+e™)
ah,
12h,
-8(22+e"+e)e ™)

+ (ag(—(2+e"+e™) e™+ (22 +e"+e ™)™ +8(22+ "+ e™?)e”

+(1-a)(—(22+e"+e™) e™+(22+e"+e™) e +8(22+ 6" +e7) &°

~-8(22+ " +e) e ™))
— 0_

This yields

& = L% f_z_z_:(ag(_ e+ e 188 —8e

+ (1 _ a) (_ efzae—.'za + ser'ﬂ _ 8e—iﬂ))
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=0.

We obtain therefore the symbol

1-1gau—n)u&me—mm2mi
g = ah ¥
1- iﬁ'—:a(lﬁsinﬁ —2s5in20)i

and consequently,

2

ah,

12h.

‘1——iﬂﬁu(1ﬁﬁna-—2gnza)ir
12h.

(1 - a)(16sin8 — 2s5in28)i

-

lgl* =

The expecting result | g | << 1 now follows under the assumption L —asxl

We note more stability and convergence results for a general convection-diffusion

equation in one and two dimensional spaces are provided in [6].
CONCLUSION

It is presented in this paper an elementary argument to derive an analytic
approximation to definite integrals frequently arising in the application of finite volume
method. Further difference formulae then yield discrete algebraic system for each
individual problem. Preliminary study [2] show that the current approach is easier to
extend to non-uniform grid case than alternative approaches taken in [4, 6].
Numerical experiment [9], with a two-dimensional nonlinear convection-diffusion

problem, confirms the orders in accuracy and convergence of the method.
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