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A Comparison of the Kernel and Hausdorff
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ABSTRACT

The kernel and distance methods are two important methods in
nonparametric discriminant analysis. The kernel method has many
successful applications and good theoretical properties. The Hausdorff
distance method is a new distance method that can be used even when
the probability density function does not exist. The purpose of this
paper is to find some properties of the Hausdorff distance method
and compare its performance with the kernel method in terms of
misclassification rates by simulations.
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KERNEL AND DOUBLE KERNEL
DISCRIMINANT ANALYSIS USING BOTH
CONTINUOUS AND DISCRETE VARIABLES

Sy-MieEN CHEN

Department of Mathematics
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Yu-SHENG Hsu
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National Central University
Chungli, Taiwan 32054, R.O.C.

ABSTRACT

In the discriminant analysis using both continuous and discrete
(categorical) variables, most investigations were concentrated on
the normal and binary distributions. The purpose of this research
is to study the kernel and double kernel discriminant analyses
using both arbitrary continuous and arbitrary discrete (categorical)
variables.

Keywords and phrases: Bandwidth, Discrimination, Double Kernel
Estimator, Kernel Estimator, Mean Square
Error.

1. INTRODUCTION

In many fields such as psychology, medicine, soil science, medical
diagnostic and family planning (see, for examples, Olkin and Tate“?,
Chang and Afifi®, Krzanowski®’, Wernecke!*, and Kumar and Sahai®?®,
respectively), statisticians must deal with random vectors (X, V), where
X and Y denote a continuous and a discrete (categorical or nominal)
vectors, respectively. For instances, the continuous variables could be
the soil ph, blood pressure, weight, total cholesterol, income and ages,
etc.; the discrete variables could be the soil colour, presence or absence
of a certain symptom (like depression, anxiety, or delusion, etc.), educa-

tions or occupations of wife and husband, etc..
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To analyze such data, one may try to (I) categorize the continuous
variables followed by analysis using standard methods for categorical
data, (2) score the categorical variable and then use the standard
methods for continuous data, or (3) analyze the two kinds of data
separately and then attempt to synthesize the two sets of results. The
drawbacks of these approaches are (1) loss information, (2) numerical
score is subjective, and (3) ignore any association between the continuous
and discrete variables, respectively. Therefore, another reasonable
approach is required.

For simplicity, consider the case when both X and Y are one
dimensional random variables. Clearly

Foe,n(x V=Foan(x |9 )= oy ]| 2 (x)

Hence, there are two approaches to analyze. We will consider the first
one. Also, there are parametric, semi-parametric (logistic model, see
Cox) and nonparametric approaches. We will consider the last one.
The other cases are still under investigation and will be reported later.

In the discriminant analysis using both continuous and discrete
(categorical) variables, most investigations were concentrated on the
normal and binary distributions (see Chang and Afifi?, Cox”,
Krzanowski®™'"). In practice, the distributions of the continuous and
the discrete variables are rarely known. Therefore, the purpose of this
research is to study the nonparametric discriminant analysis using both
arbitrary continuous and arbitrary discrete (categorical) variables.
Without specifying the parent distributions, we obtain wide range
applications from the nonparametric methods. However, we inevitably
lose some explicit results that could be derived only from the parametric
methods.

The nonparametric discriminant analysis depends largely on the
nonparametric density estimation. The density estimation of continuous
or discrete variable has been studied extensively; but the mixture type
variables case is relatively less explored. One possible nonparametric
approach is to use the kernel estimator. But when the sample size is
small, most of the kernel estimates are zero and hence can not be used.
In order to improve this poor small sample behavior, the double kernel
estimator has been introduced in Hsu®’ to smooth the kernel estimator
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and still keep its large sample properties.

The purpose of this paper is to investigate the performances of
the kernel and double kernel estimators in nonparametric discriminant
analysis. In sections 2 and 3, we will first review some properties of
the kernel and double kernel estimators in the framework of estimation
theory. Section 4 consists of the performances of the kernel and double
kernel estimators in discriminant analysis.

2. KERNEL ESTIMATION OF MIXTURE
TYPE VARIABLES

Let X and ¥ denote a continuous and a discrete random variables
respectively. Consider the kernel estimation of the joint density func-
tion flx, y)=f(x|y)f(y). Given a sample (X,, Y., -, (X,, Y.), the
kernel estimator of f(x, v) is defined as

1 = B K(EGEO ) 1) (1)

n i=1

where 7, is a sequence of positive constants converging to 0 and X is a
symmetric density function.

For fixed kernel K, we want to find the optimal bandwidth /4, that
minimizes the mean square error

E|fx, v)—flx: 9|7, (2)

The following results can be found in Hsu‘®. The mean square
error is given by

E\f(x )~ [, )= fx [ K¥()ds

[ 2L o]
+0(~- ) +00y (3)

Clearly, the mean square error converges to O provided that /&,—0
and nh,—co. The optimal bandwidth is given by
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1/5

Pl 3) er(s)ds

Hyes (4)

which minimizes the mean square error and the resulting mean square

error
E|fx, 9—f(x, 9)]*=0mn*") (5)

Based on the above results and assume ni;—0, it is easy to find the
following central limit theorem (see Hsu®)

LU/ 9)—F( N[0 fx, )| K(s)ds (6)

By Eq. (6) the optimal kernel function K can be chosen as the
Epanechnikov®” kernel which minimizes jK”(s)ds under mild restriction

on K.

Since 4, is a function of the unknown f(x, y), flxl|y), fly), it
should and could be estimated by their consistent kernel estimators and
the resulting kernel estimator will be consistent.

3. DOUBLE KERNEL ESTIMATION OF
MIXTURE TYPE VARIABLES

Formula Eq. (1) can be written as

£z W=F(y|0fx)

5 ?_}IK(—IL)%)(Y) i‘l‘lf_(?@X> (7)
Ba(Ah) -

When the sample size is small, all the values of Y, will not be equal
to most values of y, then most values of f,,(yl:c) and hence f..(x, ¥)
would be 0. Therefore, in Hsu®® we use an Aitchison and Aitken”
type kernel estimator Fal, y) to smooth it. Let Y has £ level, then
f,.z(_v!x) is defined as

fuly0)= if(_le)+£ [ —fuly]x)] (8)
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where —ES,KI Define
Julx, y)=fulylo)f(x) (9)

Since f,i(x, y) is a function of the continuous kernel K and the discrete
kernel A, we call it a double kernel estimator.
Clearly,

fale, ==L e, i+ =2 o) (10)

For the optimal kernel K and the optimal bandwidth %,, we want
to find the best discrete kernel A that minimizes the mean square error

L:‘E[)‘;z(x, =Sz )1 (1D

It is known (see Hsu‘) that the optimal A is given by

1—i= B, (12)

A=— ]: Slx) eﬂf(x, ¥ ]{ Ba [ a"f(IIy) f(y)-i—f(”(x)]jszK(s)ds}

¥

+ 3 ra y)ij(s)ds]w( )+o<n;)

:O(;‘a" 5 i h)

and

p=p[ L2 'y S LU 2[S9 Ki)ds |
+ i S Ksds+0(-1) +oum
—o(1)

Assume nh)—co, then max{k:, 71;1 }:h,ﬁ for sufficiently large » and

1—A=0(h%) (13)

and hence
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Var fu(x y):O(—nlhT) (14)

(Efu(x, )—f(x, y)F=00%) (15)

Therefore, the optimal A and the resulting mean square error will be of
order O(n~'”*) and O(n™*%) respectively.

Since 1 is a function of the unknown f(x, y), f(x|y), f(x), it should
and could be estimated by their consistent kernel estimators and the

resulting double kernel estimator will be consistent.

4. APPLICATIONS IN DISCRIMINANT ANALYSIS

Let (X.» Y..) o (Xus Yo and (X,;5 Yiudo o (X, ¥.,): denote
two samples from two populations 77, and I7,, respectively. Based on
these two samples, the kernel estimators and double kernel estimators
can be constructed and applied to classify any observation which comes
from 17, or II, with equal probability (the other cases can be discussed
similarly). Moreover, assume the costs of misclssification are equal
(the other cases can be discussed similarly). Then the goal of the
discriminant analysis is to find a rule that minimizes the probability of
misclassification.

When the densities fi(x, y) and f,(x, y) are known and the points
that satisfies

fz(xe y):fz(x! y) (16)

receive probability 0, then the optimal discriminant rule that minimizes
the probability of misclassification is given by: Classify (x, y) to II, if
Sfi(xy ¥)=>f,(x, y) and II, otherwise (see Krzanowski¢>).

In practice, the densities are rarely known and must be estimated.
We will consider the kernel and double kernel density estimations.
For any fixed (x, y), if f(x, ¥)=>f(x, ¥), then the probability of
misclassification is given by
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P{fo, y7=>fas(x: 3)} )
:P{[f,.z(xs y)_fz(xs y)]_fm;(x! y)_fl(x! y}]:)fx(x’ .}))7fz(x1 _)’)}
SP{ ][f,.z(Xy y)_fz(x1 y)]_[f:m(x! y)—f.(x» y)JI>f1(I= J’)*fz(-'f, _y)}

1 o 2 7 2
= W}J—)f—ﬁﬂt_,_j)_]?{E[fm(x’ yI—filxs T+ Eflx, y)—Fx v)]

F2E| fuilts v)—Fi(xs WIE|fuslts 3)—filxs 1}
—0

provided that the kernel and bandwidth are chosen properly according
to section 2. Similar results holds for the case [f(x, y)=>filx, y).
Therefore, we obtain the following theorem.

Theorem 4.1

Assume Eq. (16) holds with probability 0. The probability of
misclassifying any point of the discriminant rules formed by the kernel
estimators tend to O as sample sizes tend to co.

By a similar argument, we obtain the following theorem.

Theorem 4.2

Assume Eq. (16) holds with probability 0. The probability of
misclassifying any point of the discriminant rules formed by the double
kernel estimators tend to 0 as sample sizes tend to co.
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THE CUBE OF EVERY CONNECTED
GRAPH IS 1-EDGE FAULT-TOLERANT
HAMILTONIAN

HonG-MIN SHAW

Department of Mathematics
Fu Jen Catholic University
Taipei, Taiwan 24205, R.O.C.

ABSTRACT

It is known that the cube of every connected graph |is
I-hamiltonian. Here we show that it is also l-edge fault-tolerant
hamiltonian.

1. INTRODUCTION

Certain hamiltonian properties in powers of graphs have been
studied for quite a while; see Lesniak-Foster for a brief overview
of the stretches of some basic results in this topic. In computer science,
optimal fault-tolerant hamiltonian networks have gained a lot of studies
recently due to their connection to network designs‘”. However it is
usually difficult to verify that whether a given graph is fault-tolerant
hamiltonian or not. Hence the author proposed a study of the sufficient
conditions for a graph being k-edge fault-tolerant hamiltonian via the
closure approach introduced by Bondy and Chvatal‘?. See Lin® for
some basic results obtained by Lin.

Throughout this paper, a graph G=(V, E) always means a finite
simple graph of order »=|V|>3. Undefined terminology or notation
is referred to Bondy and Murty®”, Lesniak-Fostert.

A hamiltonian graph G is called k-edge fault-tolerant hamiltonian
(k-EFH in short), if after removing arbitrary % edges, say /. from G,
G—F remains hamiltonian. Clearly 0-EFH means simply hamiltonian.
A hamiltonian graph G is called k-hamiltonian (in our sense, k-vertex
fault-tolerant hamiltonian), if after removing arbitrary k vertices, say
W, from G, G—W remains hamiltonian.
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Let dg(u, v) denote the distance between two vertices #, v in the
graph G. The £-th power of G, G is the graph with the same
vertex-set as G and the edge-set E(G)={uv|d.(u, v)<£}.

For a connected graph G, it is known that G* is hamiltonian-
connected”*'™ and 1-hamiltonian®; in this paper it will be shown that
G® is also 1-EFH.

2. MAIN RESULT

We begin with the very first result in this topic which will be used
in the proof of the main result.
Theorem 1 (Sekanina; Karaganis)

For any connected graph G of order #>2, G* is hamiltonian-
connected.

Next we state the main result of this paper.

Theorem 2

For any connected graph G of order >4, G* is 1-EFH.

Proof

Let 7" be a spanning tree of G. It is enough to show that 7° is
I-EFH. Let e=uv be an arbitrary edge of 7°, we show that T°—e is
hamiltonian. Let R be the unique path joining # with » in 7" and z be
the vertex adjacent to « in R. Also let 7, and 7', be the subtrees of
T'—uz containing # and z respectively.

Case 1: T,={u} (Similarly for T,={z} (={v}H)

Since n>4, it is easy to verify that there exist two distinct vertices
x, y in T,—v with dr(u, )<3 and dy(, y)<3. By Theorem 1, T3 is
hamiltonian-connected. Thus there exists a hamiltonian (x, y)-path, say

P, in T3; and so [uxPyu] is a hamiltonian cycle in 77—e.



Fu Jen Studies 39

Case 2: |T,]>2

When d,(u, v)<<3, it is easy to verify that there exist vertices x in
T,—u and y in T,—v with dr(x, v)<3 and d,(y, #)<3. By Theorem I,
T% and T; are hamiltonian-connected. Thus there exist a homiltonian
(x, u)-path, say P, in Ti and a hamiltonian (y, »)-path, say &, in 73.
Then [#Pxv@yu] is a hamiltonian cycle in 7°—e.

When dr(u, v)=3, say R=(u, 2z, y, v). Let x be a vertex in 7,
adjacent to #. Again by Theorem 1, there exist a hamiltonian (x, u)-path,
say P, in 7% and a hamiltonian (y, z)-path, say @, in 7:. Then
[#Px2Qyu] is a hamiltonian cycle in 7*—e.

Therefore the proof is completed.

3. QUESTIONS

For every 2-connected graph G, Fleischner showed that G* is
hamiltonian; and later it was shown®’ that G* is indeed hamiltonian-
connected and 1-hamiltonian. We guess that G* is 1-EFH.

Notice that if 7 is a tree containing a vertex v so that some
component of 7'—» is a path of length 2, then &8(7°)=3 and thus 7%
cannot be 2-EFH. However it is likely to be true that for any
nonnegative integer £ and any tree 7' of order n>k+3, T*** is k-EFH.
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SOME RESULTS ON ESTIMATION ALGERRAS
IN NONLINEAR FILTERING THEORY

WEN-LIN CHIOU*

Department of Mathematics
Fu Jen University
Taipei, Taiwan 24205, R.O.C.

ABSTRACT

The idea of wusing estimation algebras to construct finite
dimensional nonlinear filters was first proposed by Brockett and
Mitter independently. It turns out that the concept of estimation
algebra plays a crucial role in the investigation of finiti dimensional
nonlinear filters. In his talk at the International Congress of
Mathematicians in 1983, Brockett proposed to classify all finite-
dimensional estimation algebras. Recently, Chen, Chiou, Leung
and Yau have classified all finite-dimensional estimation algebras
with maximal rank for state space dimension less than or equal to
four. Rasoulian and Yau discussed four dimensional nonmaximal-
rank estimation algebras for state space dimension two. Rasoulian
and Yau have classified four dimensional estimation algebras for
arbitrary state space dimension. In this paper we consider some
filtering systems, In a special filtering system, we have similar
results as Rasoulian and Yau's paper. Also we have classified all
finite dimensional estimation algebras for state space dimension two.
A more general filtering system is considered. We have classified
all finite dimensional estimation algebras for state space dimension
less than or equal to two, and all finite dimensional estimation
algebras with maximal rank for state space dimension less than or
equal to four. Therefore from the algebraic point of view, we
have now understood generically some finite dimensional filters.

Key Words: Estimation algebras, Filtering systems, Finite dimensional
nonlinear filters, Classification.

1. INTRODUCTION

The idea of using estimation algebras to construct finite dimensional
nonlinear filters was first proposed in Brockett and Clark®’, Brockett®

* Funded by the NSC grant NSC 84-2121-M030-004.
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and Mitter"?. The concept of estimation algebras was proven to be
an invaluable tool in the study of nonlinear filtering problems. In his
famous talk at the International Congress of Mathematicians in 1983,
Brockett‘” proposed to classify all finite dimensional estimation algebras.
There were some interesting results in 1987 due to Wong®*® (cf. filtering
system Eq. (1) below) under the assumptions that the observation h(x)
and drift term f(x) are real analytic functions on R", and f satisfies
the following growth conditions: for any i, all the first, second and
third order partial derivatives of £, are bounded functions. Under
all these conditions, Wong provides partial information towards the
classification of finite dimensional estimation algebra. Namely he
showed that if the estimation algebra is finite dimensional, then the
degree of % in x is at most one and the estimation algebra has a basis
consisting of one second degree differential operator, I, (cf. Eq. (5)
below), first degree differential operators of the form
Ba(o-—r)+5a o
Ox;

where a; and 8, are constants and 7=— ﬁ(,Z:l gi‘ +Z‘f +Z}h,),
and zero degree differential operators affine in x. In Tam Wong and
Yau®” have introduced the concept of an estimation algebra with
maximal rank of filtering system Eq. (4). Let # be the dimension of
the state space. It turns out that all nontrivial finite dimensional
estimation algebras are automatically exact with maximal rank if n=1.
It follows from the works of Ocone®“®, Tam, Wong and Yau®”, and
Dong, Tam, Wong and Yau®® that the finite dimensional estimation
algebras are completely classified if n=1. In fact, Dong, Tam, Wong
and Yau have classified all finite dimensional exact estimation algebras
with maximal rank of arbitrary finite state space dimension for filtering
system Eq. (4). For arbitrary finite dimensional state space, under the
condition that the drift term is a linear vector field plus a gradient
vector field, Yau®® have classified all finite dimensional estimation
algebras with maximal rank of filtering system Eq. (4). Chiou and
Yau®, and Chen, Leung and Yau‘ have classified all finite dimensional
estimation algebras with maximal rank of filtering system Eq. (4) for
n=1, 2, and n=3, 4 respectively. Chiou considerd another filtering
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system (cf. system Eg. (6)) and has similar results as (Chen et al.®?,
Chiou and Yau®, Dong et al.¢'?, Yau®®) about classification theorems.
Recently in Chen and Yau®> have some structure results about
finite-dimensional nonmaximal-rank estimation algebras for state space
dimension two. In Rasoulian and Yau®® have classified four dimensional
estimation algebras for arbitrary state space dimension. As a striking
result, they found 4-dimensional filters with arbitrary state space
dimension such that the drift term is not the sum of a linear vector
field and a gradient vectoor field. In this paper we consider some
filtering systems. In a filtering system Eq. (6), we have similar resalts
as in Rasolian and Yau®®. We have classified all finite dimensional
estimation algebras of filtering system Egs. (4), (6) and (7) for n=2
(cf. §3 Main Theorems). Also we have classified all finite dimensional
estimation algebras with maximal rank for #<{4. Therefore from the
algebraic point of view, we have now understood generically some finite
dimensional filters.

2. BASIC CONCEPTS

In this section, we will recall some basic concepts and results which
we need for the next section. Consider a filtering problem based on
the following signal observation model:

dx(t)=flx()1dt+ glx(E)]du(t), x(0)=x, } (1)
dy()=hlx(8)]dt+dw(t), »(0)=0

in which x, », y and w are respectively R", R?, R™ and R™ valued
processes, and v and w have components which are independent, standard
Brownian processes. We further assume that n=p, f, & are C* smooth,
and that g is an # by n C* smooth matrix. We will refer to x(¢) as
the state of the system at time / and to y(¢{) as the observation at
time ¢£.

Let p(f, x) denote the conditional density of the state given the
observation {¥(s): 0<s<<¢{}. It is well known (see Davis¢'?, for example)
that p(¢, x) is given by normalizing a function, ¢(f, x), which satisfies
the following Duncan-Mortensen-Zakai equation (see Zakai¢*", for
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example):
da(t, x)=L,a(t, x)dt+Z:} L.at, x)dydt), (0, x)=a, (2)
where
L=7 B O (@5 r—L B
2 21 0x,0%; B ax 2 9

and for i=1, -, m, L; is the zero degree differential operator of
multiplication by %;. o, is the probability density of the initial point
x,. In this paper, we will assume ¢, is a C* function.

Equation (2) is a stochastic partial differential equation. In real
applications, we are interested in constructing state estimators from
observed sample paths with some property of robustness. Davist'?
studied this problem and proposed some robust algorithms. In our case,
his basic idea reduces to defining a new unnormalized density

£, x):exp[—élh,-{x) y,-(t)]a(f, x)

It is easy to show that E(¢, x) satisfies the following time varying
partial differential equation

"gf‘“’ x)=L£E, x)+ élyf(t)[Lu, L, ©)

—_—

T %: vy {[L,, L], L}, x) 'l (3)

&0, x)=a, /

where [+, -] is the Lie bracket defined as:

Definition

If X and Y are differential operators, the Lie bracket of X and Y,
[X, Y], is defined by

[X, YIp=X(Y¢)—Y(Xp)

for any C™ function ¢.
Recall that a real vector space &, with an operation FxIF—F
denoted (x, y)|—[x, ¥] and called the Lie bracket of x and y, is called
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a Lie algebra if the following axioms are satisfied:
(1) The Lie bracket operation is bilinear;

(2) [x, x1=0, for all x&F;

(3) {x [y 2} +{y [z 2]} +{z [z, y1} =0, (x, 3, 2EF).

Definition

The estimation algebra E of a filtering system Eq. (1) is defined to

be the Lie algebra generated by {L,, L,, -
in system Eq. (1)

We further assume
orthogonal matrix as follows:

dx(t)=fLx()]dt +olx(t)]dv(L),
dy()=HLx(E)dt +dw(t),

Here
1y @ ra O = af:
L°_T.§1_3F ,Ef' 8x,- Ex ax,-
— (s
- 2 ('§1Di 7})
where
0
D,—‘*af— '
and
R S LI NP
7}—-'=1 61’. i=1 J

» L,,.} or E:<Lo’ Li! Lm>l;.ﬂ.'

that glx(f)]=o[x(t)] are
2(0)=x;
} (4)
y(0)=0
- h;

(5)

We also consider another filtering system, namely, in filtering system

Eq. (1), we further assume that g[x(#)]=G is a constant nonsingular »

by # matrix.
dx(t)=flx()]dt+Gdu(?),
dy(t)=hlx()1dt+duw(t),

#(0)=1x,
} (6)
¥(0)=0

We need the following basic results for later discussion.

Theorem 1 (Oconet'®)

Let £ be a finite dimensional estimation algebra of filtering system
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Eqgs. (4) and (6). If a function £ is in E, then & is a polynomial of
degree <2.

Theorem 2 (Yau®®)

Let F(x,, -, x,) be a polynomial on R". Suppose that there exists
a polynomial path ¢: R—R" such that 11m lle(2)]|=eo and hm Fog(t)=—co,
Then there is no C™ functions f,, fz, =, f, on R" satlsfymg the
equation
af: v'\ rA-
o, TE=

The following Theorem 3 was proven by Dong, Tam, Wong and
Yau¢®,

T heorem 3

af i +

There exist a sumooth vector field f on R” satisfying é,ax
i=1 i
i‘lffz_Z‘a,-xf—c if and only if 2,20, and c< 3 v/a,.
i= i=1 i=1

In Chiou and Yau”, the following Proposition 1 was proven.

Proposition 1

Let ¥=Rx be an orthogonal change of coordinate, i.e., R is an
orthogonal matrix. Then

(1) f(®=Rf(x);

B L=y
(3) (@;:)=R(w:)R", where L=J*[i‘5‘i—’7(f>] D, *—_f i BE)=
W, 0= 500 7z, F(E+ 32 h®), and &= gf gf

4) E is 1somorphlc to E as Lie a]gebra where E is the Lie algebra
generated by L,, &,, -, k,.
In Chiou®, the following Proposition 2 were proven.

Proposition 2

Let ¥=Rx, where R is the inverse matrix of G. Then
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(1) f(®)=R[(x);
1.2 & 0 ] >

(2) L=L,, where L":T?‘:}l 9% _f};: o, f,(:f)—TE}lhf(f), with

h(®)=h(x);

(3) E is isomorphic to E as Lie algebra where E is the Lie algebra
generated by L,, &y, -, k.

In You®®, the following Proposition 3 and Theorem 4 were proven.

Proposition 3

—gi’ ——gi: =c,; are constants for all ¢ and ; if and only if
(oo s L)=(hs v £+ (D8, oy TE), where £, - £, are

polynomials of degree one and ¢ is a C” function. In particular, ¢;;=0
if and only if f is a gradient field. In this case the estimation algebra
is exact.

Theorem 4

Let E be a finite dimensional estimation algebra of filtering system

Eq. (4) satisfying g}{’ ——g{%:r,-,- where ¢,; are constants for all
i 7
1<i, j<n. Then h,, -+, h, are polynomials of degree at most one.

A similar result as Theorem 4 was given by Chiou™.

Theorem 5

Let £=G~'x and £ be a finite dimensional estimation algebra of
filtering system Eq. (6) satisfying

AV =[4(F), e £(EN [ OPE) . 0YE)
G FO=LL(E), =y L@+ [ L, - S|
where £,, -, £, are polynomials of degree one and ¢ is a ¢™ function.
Then k,, -, h, are polynomial of degree at most one.
In view of the above theorem, Chiou and Yau® and Chiou‘
introduced the following definition.

Definition

The estimation algebra £ of a filtering problems Egs. (4) and (6) is
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said to be the estimation algebra with maximal rank if x,4¢, is in E
for all 1<i<» where ¢, is a constant.

In this paper, we consider other cases, and give the following
difinition.

Definition

The estimation algebra £ of a filtering problems Egs. (4) and (6) is
said to be an estimation algebra without full rank or a nonmaximal-rank
estimation algebra, if the dimension of vector space spanned by all
those liner functions in E is less than .

Suppose that the state space of the filtering system Eq. (4) is of
dimension z. The following theorem is proven by Chiou and Yau®
for n=1, 2, Chen, Leung and Yau‘® for n=3, 4.

Theorem 6

If £ is a finite dimensional estimation algebra with maximal rank
of filtering system Eq. (4), then the drift term f must be linear vector
field plus gradient vector field and E is a real vector space of dimension
2n+2 with basis given by 1, x,, -, x,, D,, =, D, and L,, for n<<4.

A similar result as Theorem 6 was given by Chiou®.

Theorem 7

Suppose that the state space of a filtering system Eq. (6) is of
dimension #, #<4. If E is a finite dimensional estimation algebra with
maximal rank, then

G F=L4(®), s @1+ (-G, o D)
where ¥=G"'x and ¢ is C” smooth. Therefore £ is a real vector space

of dimension 2x+42 with basis given by 1, x,, -, x,, —32——_1“,, e,

0
—ax——f,., and L,,.
n
The following two classification theorems about nonmaximal-rank
estimation algebras were proven by Rasoulian and Yau¢'®.
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Theorem 8

Suppose that the state space of the filtering system Eq. (4) is of
dimension two, then the 4-dimensional estimation algebra is isomorphic

3?[_ — iz %)

to a Lie algebra having the basis: 1, x,, D=

and Loz%(élDf—v). Moreover @,,= gij’—— g? =0, [L,, x,]=D,,
1 oy

(D:s x,0=1, [Le, D=~ 5, —ax,+b, where a, b, are constants. Also
p=ax?+2bx,+g(x,), where g(x,) is in C*(R). In particular, f and f,

satisfy the equation
_ﬂfl_+ 0f; + 04+ fi=(a—Dxi42bx,+ g(x.)
0x, 0x,

where a>1.

Theorem 9

Suppose that the state space of the filtering system Egq. (4) is of
dimension greater than two, then the 4-dimensional estimation algebra
is isomorphic to a Lie algebra having the basis given by 1, x,, D=

— filx,, =, x,) and L,,z%(it Df—?;). Moreover w,,=o,,==,,=0,
[Lsy % 1=Dyy LDy %,0=1, [l D]—J) ug}"?—_axl-%b, where a, b, are
1
constants. Also p=ax?+42bx,+g(x,, --,x,,}, where g(x,, *, x,) 18 In
C™(R*"). In particular, f,, -, f, satisfy the equation
of, | 0f,

¥ e £ +fi=(a—1)x342bx,+8(Xss ++0s X0

where a>1.
The following four lemmas was proven by Chen and Yau‘".

Lemma 1

Suppose that the state space of the filtering system Eq. (4) is of
dimension two. Let the estimation algebra is finite-dimensional. If
a(x)D,+-b(x)D,+c(x)=E, then a{x)=f,x.x,+linear function and b&(x)=
B.x,x.+linear function, where 3, and (3, are constants.
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Lemma 2

Suppose that the state space of the filtering system Eq. (4) is of
dimension two. Let the estimation algebra is finite-dimensional. If
EEE is a polynormial of degree two, then w,, is a constant.

Lemma 3

Suppose that the state space of the filtering system Eq (4) is of
dimension two. If the estimation algebra is finite-dimensional, then A,
is at most linear.

Lemma 4

Suppose that the state space of the filtering system Eq. (4) is of
dimension two. If the estimation algebra is finite dimensional and

0f, _ 8/,

x,&=F, then 0= B2 is constant.
1 2

3. MAIN THEOREMS
Two immediate results follow from by Theorem 8 and Theorem 9.

Theorem A

Suppose that the state space of the filtering system Egq. (6) is of
dimension two, then the 4-dimensional estimation algebra is isomorphic

to a Lie algebra having the basis: 1, «,, D,:%—f,(xl,xz)
1
l 2 ] . 2 1
and Lo=*2—(§7D.-—77)- Moreover m,zz%——gi =0, [L,, x,]=D,,
[D,, x,]=1, [L,, D ]—--If fgﬂ_:ax +b, where a, b, are constant. Also

n=ax*+2bx,+g(x,), where &(x.) is in C*(R). In particular, f, and f,
satisfy the equation

gf 48 3fz + i+ fi=(a— x4 2bx,+ &(x,)

where a>1.
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Theorem B

Suppose that the state space of the filtering system Eq. (6) is of
dimension great than two, then the 4-dimensional estimation algebra is
isomorphic to a Lie algebra having the basis given by 1, x,, D,=

—fl(xl, v, x,) and L, =r1—(}i‘ Di— ) Moreover w,, =, ==

=0, [Lys x,]=D,, [D,, x,]=1, (Lo, D=~ 2 g:

are constants. Also p=ax?+2bx,+g(x,, x,), where g(x,, x,) is in

-=ax,+b, where a, b,

C*(R-*). In particular, f,, =, f, satisfy the equation
afl =t afz +f +fz*(a_l)x +2bx +g(xz: g | xn)

where a>1.

The following Theorem C classifies all finite-dimensional estimation
algebras, when the state spece is dimension two.

We need the following Corollary which follows from Theorem 2,
and the proof is similar to Corollary in Tam, Wong and Yau®".

Corollary

Let F(x,, -+, x,) be a C” function on R" and a polynomial in
x,, +, %y, where k<n. Suppose that there exists a polynomial path
¢: R—R* such that 1’112 lle(®)l|=co and I‘im Fog(t)=—rco, where x4, 5 X
are fixed. Then therg is no C” functio;;: Fis fes = f. on R® satisfying
the equation

500 e
= B3, +'_‘z=fa‘1fs—F

i=1

For convience, the following letters @, b, ¢, d, e and s denote
constants, and the functions #(x,), #,(x,), and u(x,) is in C™(R).

Theorem C

Suppose the state space is of dimension two. If the estimation
algebra E of filtering system Egs. (4) or (6) is finite-dimensional, then
one of the following holds:
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(i) E is a real space of dimension 6 with basis given by 1, x,, x,,

0 0 _
Dlﬁa—xl—fl, D’Ha—xz f,, and Lo.

(il) E is a real space of dimension 4 which is isomorphic to the
real vector space having the basis given by 1, x,, D,, and L,.

(iii) £ is a real vector space of dimension 2 with basis given by 1
and L,.

(iv) Eis a real vector space of dimension 1 with basis given by
L,.

Proof

By Proposition 2 and the proof of Theorem 7, we only need to
prove the estimation algebra E in filtering system Eq. (4).

In view of Lemma 3, all the observation terms h;, 1<i<m are
necessarily affine polynomials. So we have the following cases.

If all the A; for 1<i<m are actually zero, then obviously we are
in case (iv) above.

If all the A, for 1<i<m are at most constants and one of them is
nonzero, then 1EF, and

(L., D=3 (D*~7, 11=0 (7)

Therefore we are in case (iii) above.
If there is only one h,=ax,+bx,=F, where one of 2 and b is

nonzero, and other /4;s are all constants. We may assume that ;=
1 c . 1 c
— % +———x,. Let ¥=——x 4 —
V14 ¢ Y1+ V'1+¢* Vi+e
1 C . :
— x., which is an orthogonal change of coordinates.
V1+c VvV 1+c? 8 B

By Proposition 1, in this case, we always can assume only one linear

x, and Z%,=

function x,+c=E. By Lemma 4, w,, is a constant. Observe
I 2
LLy, IJJZT[E D:’—??r xl]:Dl (8)
=]

[D., x]=1 (9)
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Y,=[L,, D,]z[i(};‘ll)i—v), D1]=mn=Dz+%[%%lLﬁ%]
=w,,D,+ é gz; (10)

If w,,=0 the ’gz &E. This implies 7 is of the form

axl+bxix,+cx,x’+lower degree polynormial terms-+u,(x.)

by Theorem 1. Recall that

0f, 8/ ;
or. T, Tt fi=n— Eh (11)

If % is a polynomial of degree 3, i.e., one of @, b, ¢ is nonzero, then
f_éhi:':i—xf%—e (12)

is also a polynomial of degree 3. According to Corollary, Eq. (11) has

no C= solution f. This leads to a contradiction. Therefore we have
shown that o is at most linear function. If —6W-=ax1+bx2+c,
ox, 0x,

where #40. Then by Corollary and in view of Egs. (11) and (12), there
is no ¢ solution f. This leads to a contradiction. By a similar

argument for fg%—:corlstant, we get a contradiction. Hence, -gff*=
1

2ax,+b, for some non-zero constant @ and constant b, or y=axi+u(x.).
By Theorem 2, we have a>1. In views of Egs. (8), (9) and (10),
under the assumption @,,=0, we are in the case (ii).

If w,,=c+0, observe

(¥, DJ=[0.D. 45 (5 ey gzl ). D]

_ .1 oy
=w?, T——axf (13)

Then

fgﬁz—:axf+bx,:cz+cx§+dxl+ex2+s (14)
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(L, Y1=[Le 0uDit4- 2]

ox,
Ow,, | &y
[ Dt ( ox, ox, )]
L k) 1 o9 , 1 &9 1 8%
+ gDt gt aron Dt a axpr, (19

Suppose dega—"i-:l By Lemma I, we have a=c¢=0 and hence 540
o0x?

o'y
Ee——bxlxz+dx;+exz+s

which means that

P=—r b xix, +i£x i %] b x o u(x)x, e (x)
6 6 2
Then
afgx, =2bx}+ex,+ullx,)

Again, by Lemma 1, $=0. Hence,

v=—‘§—xt+ St w ) u(x,)

A contradiction occurs again if d=40. Hence,

gi; =ex,+s
If e<40, then since x,, x,&F, by Theorem 6, we are in case (i).

If e=0. Again from Eq. (12) we have Eq. (11) has no C™ solution
f» this leads to a contradiction.

Finally if the vector space spanned by #,, -, k, contains x,+a
and x,+b, by Theorem 6, we are in case (i).

At the end of this section, we consider a more general filtering
system (15) containing filtering system Eqs. (4) and (6). Namely in
filtering system (15), we further assume:

(i) hy, =, h, are analytic;

(ii) &, =, & are analytic vector field, where glx(f)]={g.[x()], -,

Zlx(£)1};
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(iii) The Lie Algebra A spanned by g, -, & is abelian and
Alx)=R", Yx&ER".

Note

This filtering system was proposed by Collingwood®'*.

s, O
Let L,—‘_E ?’,W.

Definition

The estimation algebra £ of filtering system Eq. (7) is said to
be estimation algebra with maximal rank, if there exists functions
r(x), -, r(x)& the vector space spanned by 7#,(x), -, A,(x) such that
Le(ri)=8:1, 1<i, j<n.

Theorem D

Let n<4. Suppose the estimation algebra is a finite dimensional
estimation algebra with maximal rank of filtering system Eq. (7). Then
E is locally a real vector space of dimension 2242 with basis given by
1, 7y =0 0y Lg—fis s Lge—fs and Ly, where L (r;)=8,;, 1<i, j<n.

Proof

Since A(x)=R", Vx&R", and [L,;, L,1=0, for 1<i, j<u, we have
£,(x), ++, g(x) are linearly independent vectors.

Hence for any fixed x,&FR* it is well-known, (see for example:
Boothby¢"), that there is a diffeomorphism F:U—V, where U is a
neighborhood of x, and V is a neighborhood of the origin in K", which
induces an isomorphism Fy: T.(U)—>Tr(V) such that

Fy(Le)|(E)= E'ngji)-ﬁr(:) "

for any analytic & at z=F(x), and x&U.

Locally, we represent the filtering system (15) by a system Eq. (4)
with g[x(¢f)]=1I1. Moreover, in Brokett’s paper, it is shown that the
diffeomorphism F induces an isomorphism between the estimation algebra
E of filtering system (15), and the estimation algebra £ of Eq. (4).
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Therefore, £ is finite dimensional with state space V=R". Since E is
of maximal rank, there exist fuuctions »,(x), -+, #,(x)& the vector space
spanned by #h,,(x), -, h,(x) such that L,{r;)=8&;, 1<i, j<n. From
Eq. (16), we have that

Or o F! -
——a; (z)=constant, 1<i, j<n
: |
That is, z,+¢,, *, z,+c, are in E, where ¢,, -, ¢, are constants, or £

is of maximal rank. By Theorem 6, £ is a real vector space having a

basis 1, z,, -, 2,, —a%—floF“, -ﬁ%—f,oF“, and L,. Hence, E

is locally a vector space having a basis 1, #,(x), =, 7(x), Lei—fis =
Lew—/uy and L,, where L;(r;)=8,;, 1<i, j<n.

Q.E.D.

Using a similar proof, we have the following classification theorems

for: n=1, 2.

Theorem E

Suppose that the state space of the filtering system (15) is of
dimension one. If the estimation algebra £ is finite dimensional, then
either:
(i) E is locally a real vector space of dimension 4 with basis
given by 1, »(x), L,—f and L,.

(ii) E is locally a real vector space of dimension 2 with basis
given by 1 and L,.

(iii) E is locally a real vector space of dimension 1 with basis
given by L,.

Here L r(x)]=1.

Theorem F

Suppose the state space is of dimension two. If the estimation
algebra E of filtering system (15) is finite-dimensional, then one of the
following holds:

(i) E is locally a real vector space of dimension 6 with basis

given by 1, »(x), v,(x), Lsi—f.» Les—F, and L,.



(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(1

(12)
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(ii) E is locally a real space of dimension 4 which is isomorphic
to the real vector space having the basis given by 1, r,(x)),
Le—f, and L,.

(iii) E is locally a real vector space of dimension 2 with basis
given by 1 and L,.

(iv) E is locally a real vector space of dimension 1 with basis
given by L,.

Here L, [r;(x)]=6,;, 154, j<2.
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Input M(G) s m(G)
#® arbitray » 0 =b—Au‘”

solve Q8@ =r®

1
1) —4y€0) o) e DT
4=y +75 ==
r=p—Au'?
e 3 A N (R 1—m(G)
o= (1= 5 ot 6”) 0= = MG)—m(C)

k=1

Do until(%:—;”—ée )

Ut =p,y, (l ’_é— 0') T T

Detr O Ttk
+[I_Pl+l( I 0') Z(fff_;_l)z 9‘ I':( ?

Pr+1 O o)
oty #HY
solve QW =™
z if k=1
8 ] Ty
F,= 9 ezt if k=2
(k—1)" 2 -,
. (k-H) “Qz=DFi-— gy Tt ety if £>3

—[1— S PO IO [ET ]ﬁl
Pr+2— 2 16 Or+1 2(k+2)2 St+1
r(k+1):b_Au(k+1)

k=k+1

enddo
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» Legendre ZIERXNEE:

Legendre £ 2% Legendre /+iBM7EZSEE (po

tential) Eig 9% » £

A iEBARERE (Newtonian theory of potential) EE®BEERH (Coulomb

potential) H » B2 EREAESZBELS o &
RIEERE -7 2 @ B b puzkrm s Il :

R=|a—b|=(|a|"+|5|*—2|@| |5 |cos 1)

R EHEEWE a b

A p=1rrx=cos7 s H “}l?:l_tli_l(l"“zxﬂ-f-p’)"’z:]]_!(1_29 SOSE

o BREH | RRBIACY > Hep -

a

- =(1~2pcos T+5")y"" (30)
#& |p|<<1» A_HRBBA% (binomial expansion) 5 :
- =(1—peiTy (1= ey
v
(_i) _1
_m — 1y 2 nn‘nJ’m — 1y 2 % —inl
‘ng( ]) n p ¢ ngﬂ{ ]) ( n )p ¢
R PEER (Cauchys law)
_N\/_ 1
Ll Cn/2z
__’.l‘_ ="~‘§o p,, é:( kZ )(nZk)[(kl)k(_l)n—}eure—i('&—k)?’
F(— I — 1)teitTgitn=0T] = }z!np".ﬁ,.(cos 7) 31
Hep
_ 1xX3X--X(2n—1) IX3X--xX(2n—3)
L (cos )= IXAX X (21) 2cosT+ TREX X (3n—2)
1 1X3xX--x(2n—5) 1x3 _
X -2 cos (n—2)r+ 2X4X - X(2n—4) 2x4 2 cos (n—4)1

+ -

4 2]x|+|pl<<l s B cosT=x 1 Al :
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(1—=2px+p?)*=[1-2p2x—p)]"""*

S [ IX3Xeex(@2n—1)
=1+ B[ PO
1 1X3XX(@2n—3) n—1 ..
T2 (n—1)1 1
1 _IX3IXX(2r=5) (=2)n—3) ...
L D )1 T Ixz ¢ ]
EREAK 3D Hh# - #:
1X3XX2n—1) [, nxn—1) ,,
L()=—""""1 [" ~2n—1) "
nn—1Xn—2Xn—3) .., ..
toxd )= * T ] -

#HMBAR (32) £ Legendre £EK o
¥ f2) EEBRANEHEITN B xSz c REEEBA  B% » H—HEE
# (regular) ~ fii B EHPAMHRE (simple closed curve) » Al

ol Sl
SOD=5 5§ gy 4t o8

fifr Cauchys 5443 (Cauchys integeral formula) o
4 fR=(Z—=1yn=0:1:2>- HE flz) £FEEREETER
T -

L= e (w—ty = § (34)
£
d (tz_])u+: » (t'.’__])L_ _(tz_l}n-l-l
dr (f—x)™ =2(n+1} (t—x)" (n+1) (t_——x)"“

ERBEMGE o FBEL > TER

0=2§t ((12_1)» die (i2— 1)+ 5

t_x)n+1 . (t__x)-dz
At
L=ty § S dt b 2) 35)
i
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25 .
E—1y (=1
- dx+2n§z T di— n:ft )m —0 (36)
HETM AT HERS ¢
(n+ 0§ -E=N v 2rmions, (-2 minge £,r)=0
HEREAR (34) B8
(n+ D2, (x)—Q2u+ DxL(x)+nl,_(x)=0
| L, (x) ZREREL
Loni)=2L (e~ s () 37)

n-H

2N)=1> L(—D=(—1)

& x#xl B4 ¢ Z—{@7 Cauchys BSAREBHE » FL x BEL »
=11 RPEy A t=x+x*—1)"%e"* Hh —ra<e<n [ (=1 5
v x'—1 B94E (branch) » Bl

L= =L =1 coserde (38)
B Laplaces &5 B —1<x<<l B+ 18 |L,(x)|<<1o

Rl » IR LA T I B AT
5|2 9

BER 110 1= L(0)<L,(2)< o Z L ()< Ly () o BLIT o

=B 10
R x>0 % m EEREEAR » La(x) BETREEEA o

EFE 11
R n REEEEY > d REEHEE - B d>14

H,(w)=-%) (39)
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Hrp £,(w) & Legendre SIEZA » Al
H,(d)=1 (40)

max |H,(w)|= ﬂ,%ﬁ @1

-1l<w

= MG)» m(G) FRIREM G RRARB/MERE - «+ REERYE A
m(C)<x< MG)<<1 » AIYSER] [m(G) > M(G)] WertBIEER) [—1- 1] ;2 ik
B -

— M(G)—m(G) .
= M(G) m(G) il

_ 22— MG)-m(G) .
4 d= ey B A R

Hyw)=-7% E% (L MG G+ MG +m(G)

B max lP,,(x)l:mi}LaquH,,(w)l o FRETI#ERE Legendre 4 THS IR

m(G)<x<M(G)

» B RE SRR 7 o M(G)—m(G)
Legendre mﬁﬂe?%ﬁﬁﬁeawu;@@m P w(ﬂ—'—wf_cg"lﬁt%’

2— M(G)—m(G) L w(x)) |
2= G » SR Plx)="" 50 1
P(x)=1

Px)=rx+1-7

2
Hep 7= 22— MG)—m(G) o AR (37)

2n+z  L(2)

])n+1(x): ) (TI+1"—T)P (-x)

n‘[_] ’H-l(
n u-:(z)
S I RS e
&
n+lz  L,(2) (44)

pn+1:7n+l £“+l(z)
FTLAR (43) THER :
P i(0)= 0t T2+ 1=1)P () 700418 +(1— 0.4 )P0 () (45)
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Hot =15 BAARK (44) B
purn= (1= g 00”) n=1 (46)

HAR (4) BAR (45) WTLHRSERAR
U=y U+ 70,08+ (1— 0,4 Ju*=0 (47)
fRE L B2 » BMEE T Legedre £HEAMMEE: » MM AL (2)
ZH B o R R R S AE T

MM % 12: Legendre ZIARXNEE
(1) Input M(G): m(G)
u* arbitray » 7“=p— Au®
solve Q8 =y

(1) — ,,Co e}, e 2 - ncesreey
U =g @ T= =G —m(C)
2) rO=p—Au®

(i L 8T _ MG)—m(G)
"F('_ 3 ") =2 MG —m(G)

k=1

(k)
(3) Do until (H—Se)

solve @8 =r®

U= 00 D+ 70001 8P +(1— oy Ju 0

_ (k1) " i
pt+z*|:lf AE+17—1 Du+.10 ]
PRCE SOy S PR S
k=k+1
enddo

THEBEMFILHE .2 Chebyshev IEE ik CRIE L » LUSBE T % 2 L
A o
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W% 13: Cheyshev ZEXMEE
(1) Input M(G)>» m(G)
u arbitray » #¢?=b—Au'®
SOIVe Qa(o)zr(li)
w =y L, 7= 2
T 2—M(G)—m(G)
2) r=b—Au®
—(1—L .\, _ MG)—m(G)
o.=(1- ”) 0= 3 M(G)—m(G)

k=1

(3) Do until ( ”?—uﬂl—<e)

i ke
solve Q8™ =y®

w0 = 40 4704 8P +H(1— pus Ju"Y
1 -1

Op+2=— (]_T Ph+102)

’,(b«u}:b,_Au(IHl)

k=k+1

enddo

AHERR
HAM% 88 TS R B AL B B Dirchlet RE !
PPu=—1-¢: 0<<x<<1 > 0<<y<<l
{ (48)
u=0> on the boundary

FA 7 Bk ek Sk B L EEME R SRR 0 LAMA Varga®® &
Young'® » W] 43 REEMRR

M-
u(x » y):p%la” sin prx sin qmy (49)

Hep
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r‘ e pgh et qgh_ if » dd

| e e S 1 * 4 are o
apw—] sin® p;zk _’_szwq;rh

L 0, otherwise

MM h=1/M R4 BRI EE o A= {5 FIRI5E (48) TR A B P22 53 B R 1B 1Y
AR A FLFE (12 1 0 1 FSBIRAR b BRRS Rt Au=bo BT
RAILAAER » SIRARFLHNT (exact stopping test) » 1ol
e=10"" BREMHTMEM «@=(0> - 0)T o FFIEY cputime Bre FBFEHE -2
BT TR 20 RAVTFIGME » BB o 2L FTROBMERSS » BB ERHRE 7
A EBEABETRSE (nonsymmetric diagonal format)® » jEfEfF
BEARARRHAEMRZ R » TEESERAEEE  MEARMREE -
HAZEEMBR Q=1 2 RF £A%KRE » JIEREE G=/-A H%

S(G)=S(I—A)=max |{—3+4 cos (zh) » —3—4 cos (mh)} |

S(G)>1» WA RF #EAEREMAR (48) G o e A3 2 B HA n
IR » AT BB (B HERR 2 o

FE— SREE G WRAHEE MG) BER/INEBIE m(C) ZBiRE

0 | M(G) | m(G)
I | SRR ) ’ = —
D ‘ cos (wh) —cos (zh)
81 | ;—+~;—cos (nh) %-%cos (xh)

N f 225 961 1 3,969 ‘ 16,129
. . , 1 o
RF | u | ur 24 24%
RF-FJ | 97 l 197 [ 39 ‘ 795
RF-DH 86 174 348 698
RF-LG [ 80 161 323 647

* #T overflow FEH RS o
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E= Q=D KrZiERH

75

N 255 [ 961 3,969 | 16,129
| ! o
J 705 o2 11,302 45,193
FFT 97 | 197 396 795
J-DH 86 174 348 698
LLG 80 ‘ 161 323 647
00 Q=8 FzERH
N 225 961 3,969 16,129
87 1,416 } 5,657 22,609 | 90,393
81-F) 97 1 197 396 | 795
8/-DH 86 174 348 698
81-LG 80 161 323 647

EA h=6—14 sice.s N=3,969 » mo=—M, » M(G):cos(%)xo.%sms
Z 3 E cputime » on IBM ES 9000

Mg | 0.9983 ‘ 0.9985 ! 0.9987 i 0.998795 | 0.9988 0.9990 0.9992
J-F3 { 551 498 434 396 394 288 377
0.6825 0.6175 0.5280 0.4880 0.4840 0.3535 0.4615

J*DH{ 529 473 400 348 345 301 325
0.6470 0.6785 0.4905 0.4265 0.4220 0.3780 0.3995

J-LG { 518 459 383 323 319 325 36l
0.6725 0.5925 0.4980 0.4010 0.4205 0.4175 0.4680

J-CH { 507 446 366 294 289 321 353
0.6140 0.5375 0.4375 0.3595 0.3475 0.3865 0.4220

ALFHRHALSEANERE » FRAEREE C HRAKEE MG) Bx
INEBE m(G) o 25 Hageman and Young® X Young et al.” ®JLL
RHINE—ZE o ERFEEBR MG) B w(G) AmERR D B—/iEY
(Case I) % Q=D B » m(G)=—MG) o /MK (Case II) & Q@=I =
Q=81 B » Bl m(G)<M(G)<<1 o HEEWNH RIS ST MGEE MY
#, 76 Case I FREMEE me=—M:» T M, <M(G) o 7£ Case II Ff» 3
MEE me=m(G) MEFEE M MG) SR FROEKE
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£ h:% vice. s N=16,129 » me=— M, » M(G):cos(%)wﬁ.%%%
2 %8R cputime s on IBM ES 9000

My I 0.9992 0.99%4 I 0.99%9 | 0.999699 } 0.9997 J 0.9998 0.9999
JF) { 1,672 1,402 1,053 795 791 756 894
8.7125 6.8985 5.2045 4.1436 3.9555 3.7775 4.4785

J—DH{ 1,644 1,368 1,005 698 690 651 921
8.4755 7.1570 5.2020 3.6825 3.6495 3.4490 4.9400

FLG { 1,631 1,351 981 648 638 722 994
9.0675 7.1675 5.0895 3.4420 3.6195 3.9925 5.3695

J—CH{ 1,617 1,335 956 588 578 708 986
7.9760 6.6410 4.6810 3.1550 2.8815 3.5085 4.8785

LUT 8P 1BM ES 9000/860 (BUERS MBS » 71 h=—g ~ 45 ° +

B g B 0 SRR Q BRI Mssmy o 3 FJ ¥ DH 3+ 1G i -
CH BlHOEEZ M o M LTS » HRRIETHER ERASHRIER » fI
DH # LG ¥ CH i% » £BERILT Q=1> Q=D > Q=81 EEZ S
) > TR RLERIBRAT 4 o BERI Mo~ MC) HMAIEHER KA
BRI o

R LTI » B ICHREN AR » Bifs MC) B (80 Mc>M(G)) »
FJ 3% ~ DH ¥ » LG 5% CH M3 AOR K5 MG) B (80 Mp<M(GD)
5 # Me<M(G) ¥ » RCCH)>R(LG)>R(DH)>R(FI) (3 : &ML\ R (m
M) R BOEE MM » 8 CH HBEER LG 3%~ DH #  FJ
5 M;>M(G) K5 » CH MR R HARY o

EELERARZALHAMEREZ cputime HfE (L N=225 §§ » Z cputime
R » RIVRD, » EHAEERAR: » IBM ES 9000 RERBR VAX
4500 o

#+ FJ g2 cputime H:f# (ratio)

N [ 961 3,969 ‘ 16,129

VAX 4500 8.209125 91.787072 1,565.475285
IBM ES 9000 5.947368 51.368421 436.168421
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%\ DH k7 cputime Hff (ratio)

N ‘ 961 } 3,969 ‘ 16,129
VAX 4500 7.764706 | 90.441176 1,526.050420
IBM ES 9000 6. 125000 | 53.312500 460.312500

#Hh LG B2 cputime H:fE (ratio)

N 961 | 3,969 16,129
VAX 4500 7.815945 86.205240 1,469.257642
IBM ES 9000 6.266666 53.466666 458933333
Y ] i

ARMEL Féjer £ mikyk (% FJ ) » Dirichlet SHAMER
(f#% DH ¥:) B Legendre &3EA ik (f# LG &) » sRmEEAERER
RF - Jacobi B Q=81 » FILARR¥ERH » FE Chebyshev £k
(% CH ) sk o i8S HA LAV ER, » AREARG HEMRE » B
FIR A RBRAOBIT c MEMEFF ) fEELS RERBIER » BT - &
JEH B A ATTERMERT

AFHRH ST R » FRASRER G MBRARR/HEE B
TEBE » FIEROSRER » SRREERMNBHE » FJ 5-DH LG &
2SR B R R  (ERMERZEAENRE » ARMEEN o T RF
EASRBEEEBREERE o BEEBET » LG EiksosZd g DH &
s T DH @EilszaER FI & o B4 » MEEEnRTanksFsiE
BB EIA o WK N B#HAR » B cputime MLER & » FEERK 1BM
ES 9000/860 = %25 iR VAX 4500 ¢

BB » B MG) B 0 BB MG) ZWECEZE » ERIMEM.
M(G) ¥ o it » [EBF#E— P EH £ SEREE IS RENBRE » B&H
A (adaptive) HkZBHRMEAFTEMEKE -

8 OB

A ARER P eETE NSC 83-0208-M030-018 HBHZE/EE) » 1B LUEF
FEBL » LB ERE ME -
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()
(2)

(3)

(s)
(6)
(7)

(8)
(9)
(10)
(1n
(12)

(13)

(14)

(15)

B2 T I v B At B T A sk 2 g
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On the Study of Polynomial Accelerations
Constructed from Kernels

Yu-Hsiung Huang AND KaANG C. JEA

Graduate Institute of Mathematics
Fu Jen Catholic University
Taipei, Taiwan 24205, R.O.C.

ABSTRACT

In this paper, we study using three different type of polynomials to
accelerate basic iterative methods for solving large sparse linear system
Au=b, where A is an n by n spd matrix, and b is a given n-dimensional
real vector.

The idea is to look for a polynomial of degree m, with P,(1)=1,
such that ™ =P,(G)e> holds, where ™ is the mth error vector.
Here, the matrix G is the iteration matrix. Such algorithms involve
only matrix vector multiplications, and additions of vectors, so they are
well suited for vector and parallel computers. Pylynomials used are
generated from Féjer kernels, Dirichlet kernels, and Legendre polynomials.
We derived the acceleration formulas and the algorithms for performing
such methods. Some numerical results are given and we also compared
them with the Chebyshev acceleration.
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ON THE UNIQUENESS OF NONLINEAR
APPROXIMATIONS

NANPING YANG

Department of Mathematics
Fu Jen Catholic University
Taipei, Taiwan 24205, R.O.C.

ABSTRACT

The uniqueness problem for best segmented approximation of
continuous differentiable functions C€'[0, 11 from a family of
piecewise polynomials in the L, norm, p=2, is considered. Under
appropriate hypothesis, we showed that there is an open and dense
subset in C'[0, 1] such that each element in it has a unique best
segmented L, approimation.

1. INTRODUCTION

In this paper, we consider the uniqueness problem for best segmented
approximation of continuous differentiable functions C'[0, 1] in the L,
norm, p=>2. In 1978, Barrow et al.®’> showed that for fEC0, 1] with
f'">0 on [0, 1] and log f** is concave on (0, 1), then f has a unique
best approximation from Si in L, norm, where Si denotes the nonlinear
family of all second order spline functions with at most k variable
knots in [0, 1]. Later, Chow® extend the result to Pi, the nonlinear
family of piecewise polynomial of degree » with at most k variable
knots in [0, 1]. So the uniqueness property holds for both Si and Fi
to a certain class of functions. However, these results are not true for
general smooth functions f. Thus we study the uniqueness in a different
aspect. Specifically, let P: be approximating family for JeCoo, 1]
with L, norm, =2 and consider the topological size of C'[0, 1] functions
which admit a unique best approximation. We found that the size of
such a “uniqueness set” is open (in a C' topology) and dense in C'[0, 1].

For notational simplicity, we only present the result for the case k=1.
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Consider an open set S=(0, )XR**'XR"*'. For £<(0, 1), a=
(@, @,y =, @ )ER™, b=(b,, b,, , by)=R"" and x=(£, a, b)=S, define
the parametrization map A:S—L,[0, 1] by

ql(a, t), lf 0£f<g,
Alx, )= %[ql(a, t)+4q.(b, £)], if t=E: (1)
q.(b, 1), if £<t<1,

where
q.(a, t)=_j2 a,t’ and g,b, t):_é‘,‘ bt
Then given fEC'[0, 1], we seek an x,&S satisfying
| A% )— fll,=infll A(x)—fIl, . (2)
xXes
In other words, we attempt to minimize the functional
1
Fex, f)=| | ACx, 0= r)|
£ 1
=[ lao-rmirat+ [ aw—rolva. (3)

The A(x,) in Eq. (2) is called a best segmented I, approximation. For
simplicity, we will simply say that A(x,) is a best approximation. The
knot £, in x, is called an optimal knot. Sometimes we employ the
convention A(x)o(£, g,, g,) meaning that x=(£, a, b), ¢,()=q.(a, ),
and g,(8)=q,(b, 1).

2. EXISTENCE AND CHARACTERIZATION

The concept of approximative compactness as we introduce in the
following is very useful toward the existence.

Definition 2.1

A subset M of a normed linear space X is called approximatively
compact if for each x&X and each sequence {m.,} in M with |lm, —x|—
infpeyllm—x|l, there exists a subsequence {m;} and mEM such that
my;—m, as j—oco and |m,—x||=infncyllm—=x|. The sequence {m.,} is
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called a minimizing sequence of x.

Theorem 2.2

A(S) is approximatively compact.

Proof

Let {A(x,)} be a minimizing sequence for fEC'[0, 1]. If Ee(0, 1)
for all v, then the sequence of parameters {x.} is a bounded infinite
set in R**. So there exists a point x,=S such that x,—x, (by passing
to a subsequence, if necessary). Assume first that &—E&(0, 1). Tt
easily follows that

yli*lllliA(xy)éfHFIIA(xu)HfIIF inf || A(x)— /I, -

XeSs

New suppose that £->0 (The case £,—1 is similar) and let {A(x,)} be
the minimizing sequence for f&C'0, 1. We note that .=, and
g.=II, for all v, where II, is the set of all polvnomials of degree 7.
Since the sequence {g,} is bounded in the L, norm, there is a
subsequence (also denoted by g¢,.) such that

G4, as p—*e9

for some g,&=11,. By the Minkowski’s Inequality

¢, 1/p £y 1/ £, /b
([P 1aw=a?) "< ([ 1aw=r1) "+ ([ tamr1)
From this we see that
L
tim (10, —q.1%=0
since £,—0. Thus

tim([*1gu—a.17+ [, lau—a.1?)=0.

So the minimizing sequence A(x,) converges to Alx,) = A(S), where
x,=(,, a, b) with £,=0 and a=0. The continuity of the map A in the
L, sense yields

Limf| AGx,)— /1l = llg:—/ly=infllAx)— 1l

XES
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Theorem 2.3

Let s&II, be a best approximation to f&C'[0, 1] in the L, norm.
If f&1I,, then there always exists a point »&(0, 1) and that gq,, ¢.=1,
are best approximations to f on [0, 7] and [7, 1], respectively in such
a way that

llg.—SlIP+llg.— Flir<<lis—£lI* .
Proof

Suppose not. Then for all t&(0, 1) we have

lig:—f1I*+llg.— AP =lls— f1* .

By hypothesis, g,, ¢, &I, are best approximations to f on [0, ¢] and
(¢, 1]. Thus, on [0, #],

llg:—£1*=lis—£1I%, for all (0, 1).
By the characterization of L, approximation

J:sgn () — S |s(v)—F()| 7 yidy=0, for all =0, 1, -, n.

In particular (=0),

¢
[ sen Est)— (1) 1P dy=0.
By taking the derivative with respect to #, we have

sgh [s(8)— f()1]s(t)— f(2)|*~1=0

and hence f(f)=s(¢) for all #=(0, 1). So f(t)=s(t) for all [0, 1], a
contradiction to the fact that fe1l,.

Theorem 2.4

Let f&C'[0, 11\ A(S). Then the knot £ being optimal implies that
E=(0, 1).

Proof

If £&(0, 1), then either £=0 or £=1. Let s&II, be a best
approximation to f on [0, 1]. Since fe& A(S), there exists a 7=(0, 1), a
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polynomial ¢,&7, on [0, 7] and a polynomial ¢,&1, on [%, 1] such
that

llg,— flI*+llg. — AIP<lls—f1I?

by Theorem 2.3, which is a contradiction for £ being an optimal knot.
The combination of Theorem 2.2 and Theorem 2.4 shows that best
approximations to any f&C’[0, 1] actually come from A(S). Hence
A(S) is approximatively compact.
Now if A(x) defined in Eq. (1) is a best approximation to f&C'[0, 1],
then

Fix f: Kj=0, for all K&R*"**
where F is defined as in Eq. (3). In particular

%‘E l0(E)— B~ | g.E)— FE) =0

which implies that

l0.&)— O =148/ &)]

So there are three types of best approximations to any function
feCo, 17:
(1) ¢(E)#q.E). In this case, we have [¢,(E)—fE)]=—[g.(E)—fE)] or
7.(E)+q.5)=2/&).
2) ¢.(&)=q.&) and ¢,(E3FSE).
(3) .E)=q.5)=1&).

For convenience, we shall consider subsets of C'[0, 1] according to
the continuity properties of their best approximations listed above and
denoted them by C*[0, 1], C**[0, 1] and C***¥[0, 1], respectively.

3. THE UNICITY

The unicity of best approximation is one of the basic questions in
nonlinear approximation theory. It happens often that best approxima-
tions are, in general, not unique. Wolfe” presented this in strictly
convex normed linear spaces. In the setting of nonlinear segmented
best approximation introduced above, unicity cannot be guaranteed.
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Example

Let f(t)=¢*, t=[—1, 11; then f&C'[0, 11. For f to be approximated

by step functions, we take IZ(E’ 1, _%_) and
( 1, if —1<t<<§;
el if t=§;
Ax, H={ 3" '
1 - if E<t<1.

Then it is intended to minimize the functional
e 2\2 ! __]J__ 2 3
F(x, f)_f_l(l-t)dt+f€( T—) dt.

The necessary condition of the minimization and straightforward
1 1 ;
computation show that £=—— and £=——— are optimal knots for .
p £ A 3 v p /.

So the unicity property we shall pursue is the one in topological
sense. In what follows, the topology of C'[0, 1] is the standard one of
uniform convergence of functions and their derivatives. The following
is a standard result in approximation theory.

Theorem 3.1

Let M be an approximatively compact subset of a normed linear
space E. Suppose x&E has m&EM as its unique closest point in M and
let {x,} be any sequence converging to x and {m,} be any corresponding
sequence of closest points in M. Then |m,—m|—>0.

Proof
See Singer (p. 388).
Definition 3.2

The element A(x)SA(S) is said to be normal if £(0, 1) and A~
exists in a neighborhood of A(x) and is continuous.
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Theorem 3.3

Suppose that f&C*[0, 1] has a unique normal best approximation
Alx)e>(E,, q,, g,). Then there exists a neighborhood U/ of f such that
UCCHo, 11.

Proof

Suppose that the conclusion is false for some f satisfying the
hypothesis of the theorem. Then there is a sequence {f,}CC**0, 1]U
C+#[0, 1] such that f,—f uniformly. Let A(x,)<(&,, ¢.., ¢..) be best
approximations for f, and apply Theorem 3.1 to get

Alx,)—A(x,) .

Then by the normality of A(x,) we have x,—x,. Hence
Evr Qs Guu>Eos G5 02+

But each A(x,) has the property that ¢,.(£,)=¢..(E,), s0
0=4..E)=0uE)>q:(E)—q,(Eo)70

which is impossible.

Analogous to Theorem 3.3, we have.

Theorem 3.4

Suppose that f=C#*0, 1J\C**#[0, 11 has a unique normal best
approximation A(x,)e<(€,, g,, ¢g.). Then there exists a neighborhood
U of f such that UCC**0, 1].

Clearly, the necessary conditions to minimize Eq. (3) are

F(x, f, K)=0 and F"(x, f, K, K)=0

for all K&ER™*., We now do a further step to modify the second
order derivative condition as follows.

Lemma 3.5
If A(x) is a best approximation to f, then B,(§)>0, where

B\(E)=sgn [q,(&)— (&Nl q.E)—fE)*[qiE)—f"(E)]
—sgn [¢,(E)—fE)]q.(E)—fE)|*~'[q:E)—F(E)] .
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Proof
A straightforward calculation yields
—F(x, £, K, K)=KB(EVHKBE+(0—1B(E)

where

K:(Kev Km! Kus 1 Klns Kzua Kzn 2=y Kzn)

B,(E)=sgn [¢.(6)—fENq.E)—FE)*~[q1E)— /(8]
—sgn [¢,(E)—FEN]q.8)— fE) P~ [qaE)— f(E)]

B(®)=sgn [0.©—/ENa.E—F OV T K

—sgn (O~ fENa.E— KO £ Kol

B@&=[ la—soi (LK) di+ [l 1= (S Kt de.
Now, consider the vector (1, 0, -, 0). Then if B,(E)<<0 we have
%F"(x, £, K, K)=B(£)<0

which is a contradiction.

Lemma 3.6

If f=C'[0, 1] has A(x)<>(E, ¢,, g,) as a normal best approximation,
then either

gi&)— ' (EF—LgE)— (&) if ¢.(&)+q.6)=2/), (4)
or

qi(E)7q:(E), if q,(&)=g,(&) and q,(E)FFE). (5)
Proof

Suppose fECH0, 1] but Eq. (4) fails. Then

;;F”cx, /. K, K)=K.BE)+(p—1DBE).
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Pick K, and K, so that
sen [4.5)— VL K, £—sen [0.8)—OIE, K0
and hence B,&)>0. For such a choice, ||K,|I’+I|K.|’#0; so we may
assume
O<<|| K, |+ K, II*<1
For O<e<1, let K,(e)=¢K,, K.(e)=¢K,, and

K(e)=—v T—elK "=l K.II*
Then K(e)=[K,(¢), K.(e), K, (e)] with [|K(e)||=1. Substituting K(e) for
K in BE) and By) to get B, (&) and B,/(£). Observe that

K,(€)B.(£) Ky(e)eB,(E) Ko(€)B,(£)

RO HIKLOTT?  e(IK K7~ (KK

<0

for all 0<<e<<l. However

B, (&) o e’ B, . o
RO L IKQTT = K7 % as 0.

So for sufficiently small ¢,

%wmﬁmamwm

which is a contradiction. The same argument holds if Eq. (5) fails

instead.

Remark

The combination of Lemma 3.5 and Lemma 3.6 says that B,(§)>0
is a necessary condition for A(x) being a best normal approximation to

f.

Theorem 3.7

Let M be the collection of all f&C*#0, 1JUC**[0, 1] such that each
fEM has a unique, normal best approximation from A(S). Then M, in
the C'[0, 1] topology, is an open subset of C*[0, 1JUCH0, 1].
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Proof

We may assume S&C*0, 1] M. An analogous argument holds for
SEC*#[0, 1]. So suppose there is a sequence f,—/ such that each f,
has two best approximations A(x,)¢>(&,, gu, ¢..) and A@)o(, S, Su).
Then, for sufficiently large v

0= F(xvv f»)_F(yva fu)_F,(yw fvv xy_:yrg)i
N X —ull®

1 Xv— U Xy — Uy
I‘_F”( vy Jys ’ ) ’
2 # f leu—yuH ”xu_yy”

where z,=0.x,+(1—6.)y., 0<<f,<<1. Let
muzﬂvfy +( 1— ﬁv)"?v
¢.’v: yq.'y'l"(l_av)siuw i:l, 2.

Then

7;)71?”(21: s fa K:: s Kv):szBw("-Uu)"!_KouBzv(wv)+(p_ I)st(wv) ’
where

Biv(wu)ZSgﬂ [¢w(mv)_fv(mv)] | ¢1v(wb)_fv(wv) I p_i[q;(wv)_f’(wv)]
_Sgn [¢gu(wu}_fv(wv)] l ¢zv(wy)_fv(wv) ] ’_l[qé(wv)'—f’(mv)]
Bzu(mv): sgn [¢1v(wy)_fv(wu)] I .dw(a)v)“fv(a)v) | &= lQ:v(w»)
—sgn [@..o.)—fu@)]]| B.lw)— filw) Ip_inv(wv)
Bu(@)= [ 18u0— A1 Qb+ [ 18— AOI @00
and

Q. ()= ToD)=sult)

5 =1 2
e, — .l :

Write g ln+(E—n); tl=q.&; OD=q.(l), g.(n; t)=s,(t) and note that

- )
Ky=— o= __ &
”xv—yu” ”xv_yun
So

Q. =K.2 At 0s )—quln; 8) ) 1,3,

v
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Let x=(£, a, b). Then as v—oo, §,—0 and K,,—K,. Also A(x,)—Alx),
A(y,)—A(x) by Theorem 3.1. By the normality of A(x), x,—x and
y.—x. Therefore

lim Qu()=lim Ko-lim——[ £ a.on+8)6'— 5 a,m)t']
Voo =00 v—oo Op Li=0 i=0

K Z’l: 11m tl.-("h'i‘aé)—ﬂ.-(m) t,'

i=0 y—oo

zalbin.

=,
i=
”

=K,
i=0

Similarly

lim Qu()=K, >:; bEN: .

Voo

Recall the characterization of L, best approximations,

Eila =] senla.& D—/@NaE H-7@®1-di=0
for all 7=0, 1, -+, #. Thus, for all j
Ella(E)]=sgn[q.&; 5 —fENlq & HIE
3 " Y5 .
+(p—[ |0 O~ @[ £ ai®r [rdr=0
and hence
[t D—r@ 1] & a®rrr]var
0 T
=L sen [0 O-rENaE H—FOIE .
But
[[aE o—r@r=[ S a@r v
=[[1a.& D—r@1r-tiat] La®), a@®, -, @Y
=gila), ai(f), -+, al&)".
So
A®=1a(E), ), =, aBF

==L senlaE H—1ENaE H-AOI-CO, bE
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where G(0, &) is the matrix with entries g;; and Z=(I, &, -, &7,
Denote the inner product in B**' by <., -> and define

Pl(f):<[G-l(0! E)E]T9 (l, ty ey t")> .
Then

1
H—i

B o' =— 211 sen[a.Es H—ENaE H-IEIPW)
Hence as yv—co

Q= san g, B—/ElaEs SO PO

An analogous calculation yields

QiR san g6 H—SENaE; H—/EIT PO, as v

with

P)=KIG (&, DET, (L; & -, 155
where G(&, 1) is the matrix with entries J';|l],(f; H—fE)| - itidt. Note
that

¢iv(wv)_’q1(g)1 1:.|, 2, as y—rco .,
Thus

KoBu(o)=— =2 laE: H-1O1 P

K3

p—l lqa(fv E)_f(&}]z(p—-:)Pz(g)

Next, as y—co
Buan)~Ki[ la - 101~ S aerw | £ axor|ae
+:[ lao—ro 1| S o] S uor
Following a simple calculation we have
[la@-ror L a@r][ £ a@r]a
=(557) 10& H-1O10P®
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and
[dao—ror-[ Loew ][ £ oew]a
=(527) lalEs H—rOI2PLD)
Consequently,
(p= DB} 10.Es H—FEN - PE)

+ ﬁ]"qz@; BB,

Therefore as v—oo,

T;-F"(zu, 1, Ky, K,)—Ki{sgn [q.(5)—FE)]a(E)—FE) (g E)—f'(§)]
—sgn [g,E)—S(EN]q.(E)—FE) - [qiE)— FEN)
= KiB(£)>0,

a contradiction to the fact that 0= ;F”(z,, S, K., K,) for all v. So

/v has only one best approximation for all v sufficiently large.

Remark

In all proofs of topological properties the case C***[0, 1] can be
ignored since it is nowhere dense in C'[0, 1]. Indeed, for f&C#**0, 1]
having a unique best approximation (£, q,, g,), set

fi=r+2g, IER

where g&=C'[0, 1]\C***[0, 1] has an optimal knot at £&. Then £ is also
an optimal knot of f;. Assume (£, 9,2, g,2) is a best approximation for
Ji. It follows from the characterization of L, approximation to get

q.1(E)— fr(E)F0.

Theorem 3.8

Let M be defined as stated in Theorem 3.7, then M is dense in
CHO, 11UC**0, 1].
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Proof

Given fEC*0, 11UC*#0, 1], set
fL=Ff—2h, with 2,0 and 1,—0, as yv—oo .

Then for sufficiently large v, f, has a unique best approximation.
Indeed, if £, and &, are optimal for f,, then by following lemma

EH*E and C:._’E1 as y—ee

where £ is one of the optimal knots of f. Repeat the proof of Theorem
3.7, a contradiction will be obtained.

In the proof of the above theorem, we used the following lemma
which we state as follows.

Lemma 3.9

Suppose that f&C*0, 1JUC*{0, 1] has a best approximation
Ax)=(¢, q., g,). Set

fo=f—Ah, with 2,0 and i,—0 as y—co.

If £ is an optimal knot for f,, then £,—& as y—co.
In light of the remark prior to Theorem 3.8, we summarize the
main result as follows.

Theorem 3.10

There is an open and dense subset M in C'[0, 1] such that each
element in M has a unique best approximation using the L, norm, p=>2.
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ABSTRACT

The longitudinal (LO) and transverse (TO) A, vibrational modes
have been measured between 30-1,200 cm™! as a function of temperature
(30-1,240K) for both KTiOPO, (KTP) and KTiOAsO, (KTA). KTP
and KTA exhibit an obviously different Raman spectra in the
frequency region 400-650 cm= (with respect to KTA). This middle-
frequency difference is attributed to the substitution ions in XO
group (X=P or As) modifing the force ccnstant of crystal. The
relative intensities of the low frequency bands increase dramatically
with increasing temperature due to high mobility of K* ion. There
is no typical soft-mode like behavior in the measured frequency
range. A higher symmetric structure taking place above 7. has
been confirmed by the disappearance of the 4,,(LO) stretching modes
of TiO, group. Comparison of each frequency bclonging to the
symmetry A4,, A,, B, and B, measured along the [110] phonon
direction shows complex difference. The vibrational frequencies of
various symmetries were also obtained.

Key Words: Raman scattering, KTiOPO,, KTiOAsO,, Phase transi-
tion and Ferroelectric phase.

1. INTRODUCTION

Potassium titanyl phosphate KTiOPO, and potassium Litanyl arsenate
KTiOAsO, belong to the family of the nonlinear optical crystals with

+ Present address: Department of Physics, University of Puerto Rico, P.O.
Box 23343 San Juan, Puerto Rico 00931-3343.

++ Present address: Material Research Laboratory, The Pennsylvania State
University Park, Pennsylvania 16802.
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the general formula M*TiOX°*O,, where M={K, Rb, TI, Cs} and
X={P or As}**~*>. Potassium titanyl phosphate KTP is the most famous
one of this type of materials®~*?. The high damage threshold, large
nonlinearity and broad angular acceptance have made KTP the industried
material for frequency doubling of the Nd-based laser near 1 xm®~".
The ion-exchange properties also make KTP one of the best candidates
for many waveguide applications, including phase matched frequency
doubling of infrared diode lasers and integrated electro-optic modulators.
From dielectric measurements, KTP is shown as a superionic conductor
with high mobility of K* ions, markedly at high temperature®»*», By
high-pressure nonpolarized Raman study at room temperature, Kourouklis
et al. reported that there are two pressure induced phase (ransitions in
KTP from ferroelectric to an antiferroelectric phase near 5.5GPa and
then to a paraelectric one near 10GPa“®. Especially, the A, mode
near 56 cm™' was found to exhibit a soft mode-like behavior. However,
Furusawa et al. recently measured the Raman spectra of KTP as a
function of temperature (300-1,100 K) and suggested that there is no
apparent evidence of soft mode near 56 cm™'“®>, It was concluded that
KTP would not be undertaking a displacive-type phase transition.

At room temperature, both KTP and KTA have orthorhombic
structure  with noncentrosymmetric point group C,,(mm2) and space
group Pna2, (Z=8). The lattice parameters of KTP and KTA are
a,=12814A, 5,=6404A, ¢,=10616 A and 4,=13.103A, 5,=6.558 A,
c,=10.746 A, respectively®®. Structural studies of the solid solution
imply that the high temperature point group symmetry is D,,(mmm)
with space group Pnma. The dielectric anomalies indicate that both
KTP and KTA have a second-order structural transition from ferroelectric
to paraelectric phase at 7.~1,200K and 7,~1,150 K, respectively®.
Crystal framework is constructed by three dimensional chains which are
made from corner-linked TiO, octahedral and XO, (X=P or As)
tetrahedral®. Four oxygen ions of the TiO, belong to the XO, groups
and the two remaining which do not belong to XO, tetrahedral groups
link the TiO, groups. The distortion of the TiO, octahedral in which
the Ti* ions are displaced from the centers of the octahedral results in
four medium-length Ti-O bonds, one long-length Ti-O bond and one
short-length Ti-O bond. This framework forms the channels along the
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c-axis and K* ion is located at structural voids‘’.

It is believed that KTA should have similar attractive properties as
KTP and can compensate the applications of KTP such as the extension
of frequency doubling. To our knowledge, there is no prior polarized
Raman spectroscopic study on KTP and KTA in a wide temperature
range crossing over phase transition point. We have therefore carried
out polarized Raman spectroscopy with various geometries. The aim of
the present paper is to study the various interatomic vibrational modes
over a wide frequency range, to comprehend the character of potassium
motion inside the crystals, and to provide a better understanding of
their non-linear optical properties for both crystals.

2. EXPERIMENTAL PROCEDURE

KTP and KTA single crystals were being grown using a tungstate
flux by a process described previously in Ballman et al.?%, The
crystals were oriented by X-ray and were cut into rectangular shape
having (100), (010) and (001) faces. The average dimensions of specimens
are 5.0x3.0x1.5mm* and 3.0x3.0x15mm® for KTP and KTA,
respectively. All sample surfaces for measurements were polished to be
optically smooth. The green light with A=514.5nm from an Argon ion
laser was used as an excitation source of Raman scattering. In order
to avoid sample heating, the power on the sample was kept at ~30mW.
A triple grating monochromator (ISA Model T64000) equipped with a
liguid nitrogen cooled CCD (coupled charge device) detector was used.
The subtractive mode operation was chosen with a resolution 0.5cm™.
The backscattering spectra were measured from geometries Z(YY)Z and
X(ZZ)X. Here X, Y and Z correspond to the crystal a-, b- and c-axes,
respectively. The vibrations from scattering configurations Z(YY)Z and
X(YY)X are associated with A, (LO) and A,(TO) modes, respectively.
The spectra of symmetries A,, A,, B, and B, observed under the
general X(aB)Y scattering configuration also have been measured at
room temperature.

A high-temperature furnace made by Marshall Co. was used an
Eurotherm temperature controller. The sample was heated from room
temperature up to ~1,240K (for KTP) and ~1,180 K (for KTA) in steps.
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For low temperature (<2300 K) measurements, a modified Cryogenic Tech.
Closed-cycle Refrigerator Model 20 was used with a LakeShore DRC-84C
temperature controller. The data were collected automatically using
a microcomputer interfaced to the Raman equipment. The error of
temperature reading was controlled to better than +1.0K by a feed
back from the calibrated thermocouples placed near the sample. The
incident beam was refocused for each temperature to optimize the signal.
Since black-body radiation becomes apparently stronger and superimposes
with the Raman components above ~1,070K, the measured Raman
spectra for temperatures above 1,070 K was subtracted by the background
due to black-body radiation. Results were found to be reproducible for
both KTP and KTA compounds.

In order to determine the position and half-width of various
vibrational mode, the damped harmonic oscilator model with spectral
response function (for Stokes scattering), i.e.*®

X, ww; 1 (1
R LY P T
(@0 — ) +Iw 1 exp(— Z;) )

S(w)=

was used. Where, @, and I' correspond to the mode frequency and
half-width, respectively. %, is susceptibility constant (in arbitrary units).
% is Boltzmann’s constant and 7" is absolute temperature.

3. RESULTS AND DISCUSSION

By a factor group analysis for the KTP-type structure (which
contains eight molecular units of KTiOPO, in a primitive unit cell); at
zero wavevector, the vibrational modes in the C,,(mm2) orthorhombic
symmetry can be decomposed into the following irreducible representa-

tions®**?:
I',,=47TA (IR, R)+48A,(R)+47B,(IR, R)+47B(IR, R) (2)

The symmetry species A,, B, and B, are infrared active with dipole
moments oriented along the 2z, x and y directions, respectively©®. All
four representations are Raman active®®?. We shall now discuss the
important features that were observed in Raman spectra as a function

of temperature.
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(1) Longitudinal (LO) 4, modes

Actual temperature dependent A,(LO) Raman modes of KTP and
KTA in the frequency range 30-1,150 cm™' from scattering configuration
Z(YY)Z are shown in Figs. 1(a) and 1(b), respectively. Both compounds
exhibit an unusually high scattering efficiency in this geometry. This
fact is also observed in the RTP and is related to the non-linear
propertiest®. In KTP, the main part of the scattering intensity arises
from the Raman components at frequencies near 210, 380, 490 and
770 cm~*. Similarly, the peaks located near 350, 480, 730 and 820cm™
are the main contribution of the scattering intensity in KTA. Beside
the region 400-650 cm™', frequency shifts and half-widths of both KTP

. 1241
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1181
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1131
§10
.297 °K

KTP

—hOL) B U VN 000
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ﬁ-_m;—_—-;-—.-.
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I'l'l'l'l"l'l'l'l]'llllllIil'llTT]]]]
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Frequency (cm'l)

Fig. 1(a). Temperature dependence of Raman spectra of KTP measured
from the Z(YY)Z geometry between 30 to 1,150cm™'. Here,
the longitudinal 4, modes are observed.
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Fig. I(b). Temperature dependence of Raman spectra of KTA measured
from the Z(YY)Z geometry between 30 to 1,150cm~'. Here,
the longitudsnal 4, modes are observed.

and KTA display a similar pattern with all corresponding Raman active
modes of KTA shifting to lower frequencies due to the heavier cesium
atom.

What are the origins of the vibrational modes in KTP and KTA?
According to the crystallographic investigations, the vibrational modes
of a perfect ‘isolated’ TiO, octahedron can be decomposed into two pure
bond streching vibrations of symmetry A,(»,) and E,(»,), two interbond
angle bending vibrations v, and v, of symmetry F,; and F,,, respectively,
and two vibrations v, and v,, considered as combinations of stretching
and bending, both of F,, symmetry. The g modes are Raman active
and only the F,, are infrared active, the F,, being silent. With the
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lowering of the symmetry inside the KTP and KTA crystals, all
selection rules for a ‘isolated’ TiO, group are broken and all these
vibrations can become active. The symmetries and relative ion displace-
ments related to these motions were given in Kugel et al.*.

The v,(A4,,) mode, a symmetic Ti-O stretching mode is expected to
have the strongest intensity of the high-frequency vibrations. This was
confirmed in many substances containing MO, groups such as SnNbO,,
BiNbO, and LaCuO,%**?, In our cases, the intense and broad bands
near 770 cm™ (in KTP) and 730 cm™' (in KTA) are related to the »,(4,;)
stretching modes. The v,(E,) vibration is expected to occurs at a lower
frequency as compared to v,(A,). The peaks observed near 690 cm™
(in KTP) and 670 cm™' (in KTA), most likely correspond to the v,(Eg)
stretching modes. However, the v, (F,) stretching mode involving a
Ti-O anti-phase motion is expected to have a similar frequency as the
v,(E,) vibration. The vibrational modes »,(F.,), v(F,) and y(F.,) were
predicated to occur at much lower frequencies®. After all, it is difficult
to distinguish those vibrations in both KTP and KTA due to the
severely superimposed Raman components in the low frequency range.

The internal vibrations of a free ‘PO, tetrahedron have been
calculated as a non-degenerate A,(r,) mode, a doubly degenerate E(v,)
mode and two triply degenerate F,(y,) and F,(»,) modes. The frequencies
of the v,, v,, v, and v, fundamental modes calculated by Herzberg®”
are 363, 515, 980 and 1,082 cm™!, respectively, and are 420, 5.5, 938 and
1,017cm™~! obtained by Farmer®®, The symmetries and relative ion
displacements associated with these motions can be found in Kugel
et al.®>. One can expect that the similar vibrational modes should be
observed in the AsO, group with lower frequencies due to arsenic
atom mass. Apparently, the intense peaks near 380cm™' (in KTP) and
350 cm™* (in KTA) are related to the w,(E) modes. The peaks located
near 500 cm™ in both KTP and KTA can be assign to the »,(F,) modes.
The splitting character observed in both u,(E) and w,(f7,) modes is
attributed to the slight deformation of the PO, (or AsO,) tetrahedral
which breaks the energy degenercy”. Those modes located above
800 cm™' are reasonably related to the v,(A,) and p,(#,) high-frequency
vibrations. The peaks below ~200cm™' and some low-intensity com-
ponents up to ~400 cm™ mainly belong to the external lattice vibrations
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lattice vibrations involving the K* ion motion, TiO, and AsO, groups,
and are consequently influenced by substitution of various ion. The
fact that the difference between KTP and KTA are observed in the
frequency range 400-650cm™' can be explained by that the various
substitution ions (in XO, group) modify the force constant of crystal
with different ways.

The temperature dependences of four selected modes for each
compound are plotted in Figs. 2(a) and 2(b). The two higher frequency
modes correspond to the v,(A,,) stretching mode of TiO, group and the
v,(E) vibration of PO, (or AsO,) group. All four components show
an obvious softening with increasing temperature. In the region of
30-1,150 K, the reductions of the v,(A,,) modes of TiO, group are about
36 cm~' (4.7%) in KTP and 31 cm™ (4.2%) in KTA. The yp,(£) vibrations
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Fig. 2(a). Frequency vs. tcmperaturé variations of four seclected A4,(LO)
modes for KTP measured from the Z(YY)Z geometry. The
solid lines are guides to the eye.
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Fig. 2(b). Frequency vs. temperature variations of four selected A,(LO)
modes for KTA measured from the Z(Y¥)Z geometry. The
solid lines are guides to the eye.

of PO, (or AsO,) group reduce about 27 cm™* (7.1%) in KTP and 16 cm™
(4.6%) in KTA. Clearly, the typical soft mode behavior doesn’t occur
in both LO modes.

Another important feature is that the relative scattering intensity
of low frequency bands (below 100cm™') increases dramatically with
increasing temperature. This anomaly can be understood as resulting
of high ionic conductivity duc to the high mobility of the K* ion.
One can notice that the »,(A4,,) modes of TiO, group (near 770 cm™ in
KTP and 730 cm™ in KTA) gradually decreases and eventually disappears
around 7,~1200K and 7,~1,150K, respectively. This phenomena
confirms a higher symmetric structure taking place at 7,.
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(2) Transverse (TO) A, modes

Actual temperature dependent TO Raman spectra of KTP and KTA
at frequency range 30-1,150 cm™ from scattering configuration X(ZZ)X
are shown in Figs. 3(a) and 3(b), respectively. KTP and KTA crystals
exhibit several apparently different bands at frequencies between
400-650 cm™*. Beside this region, both KTP and KTA display a similar
Raman spectra with all corresponding Raman active modes of KTA
shifting to lower frequencies due to the heavier arsenic atom. The
middle-frequency difference between KTP and KTA could be understood
as results of various XO, groups (X=P and As) and consequent
influences in TiO, group. In KTP, the main part of the scattering
intensity arises from the frequencies near 220, 270 and 690 cm™.
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Fig. 3(a). Temperature dependence of Raman spectra of KTP measured
from the X(ZZ)X geometry between 30 to 1,150cm™'. Here,
the transverse 4, modes are observed.
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Fig. 3(b). Temperature dependence of Raman spectra of KTA measured
from the X(ZZ)X geometry between 30 to 1,150cm™'. Here,
the transverse .4, modes are observed.

Similarly, the peaks located around 230, 270, 370 and 730 cm™' are the
main contribution of the scattering intensity in KTA.

The relative scattering intensity at frequencies below 100cm™ in
KTA is evidently stronger than one in KTP. It indicates that the ionic
mobility of ptassium ion in KTA is higher than in KTP. One important
feature is that the relative scattering intensityv of low frequency modes
increases dramatically with increasing temperature and reaches a rough
saturation near 1,200 and 1,150 K for KTP and KTA, respectively. It
is consistent with the results from the LO modes and confirms a
structural transition taking place at ~1,200 and ~1,150K in KTP and
KTA, respectively.
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Do any TO soft modes exist in the low frequency region? The
spectra below 170 cm™' are enlarged in Figs. 4(a) and 4(b) for both KTP
and KTA. Obviously, a strong background exists in KTA and the
average half-width of the bands in KTA also shows larger magnitude.
It implies that the potassium ion has larger mobility inside KTA crystal.
The temperature dependences of four selected TO modes for each
compound are plotted in Figs. 5(a) and 5(b). Both ,(A4,,) stretching
modes of TiO, group (near 695 cm™ in KTP and 675cm™ in KTA) and
the vibration located below 270cm™ exhibit obvious softening as
temperature increases. The reductions of »,(A4,,) modes of TiO, group
are about 24cm™ (3.5%) in KTP and 34cm™ (5.0%) in KTA from 300
to 800 K. Obviously, the typical soft-mode behavior isn’t observed for
the TO modes in the measured frequency range.
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Fig. 4(a). Temperature dependence of Raman spectra of KTP measured
from the X(ZZ)X geometry between 30 t0 170 cm™!,
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Fig. 4(b). Temperature dependence of Raman spectra of KTA measured
from the X(ZZ)X geometry between 30 to 170 cm™".

(3) Comparison of various symmetry species

The Raman spectra of the A,, A,, B, and B, symmetries measured
along the [110] phonon propagation direction at room temperature are
given in Figs. 6(a) and 6(b) for both KTP and KTA. All four spectra
of the A,, A,, B, and B, symmetries from KTP and KTA show
complicated pattern with very different frequencies. It implies that the
high optical anisotropy exists inside both crystals. In KTP, at room
temperature, 32 A,, 48 A,, 45 B, and 43 B, modes have been identified
as against 37 A,, 42 A,, 44 B, and 44 B, modes KTA. By using Eq.
(1) to fit the spectra, the vibrational frequencies of various symmetries
were also obtained and listed in Table 1 for both KTP and KTA.
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Table 1. The vibrational frequencies of A,, A,, B, and B, symmetries
observed along the [110] phone direction at room temperature.
The unit of frequency is cm™!

A X(ZZ)Y | 4 xyxy | B x@X)Y B, X(¥YZ)Y
|
KTP [ KTA KTP ’ KTA ‘ KTP | KTA | KTP [ KTA
] I
56.7 | 41.3 65.5 53.9 67.3 4.6 | 70.2| 40.8
74.1 54.8 84.8 72.0 82.0 53.3 | 81.3| 51.3
86.5 64.3 | 1006 | 101.2 90.9 73.0 90.3| 628
101.3 72.6 | 110.7 | 111.5 | 101.0 87.8  102.0 70.9
112.9 91.9 | 123.9 | 116.1 | 119.0 98.7 = 114.5| 82.0
120.5 99.5 | 1322 | 1311 | 133.7 110.6 ‘ 156.3 | 91.3
153.2 | 115 | 1367 | 1466 | 1413 | 11906 | 171.4| 110.7
176.5 132.9 | 151.0 | 161.8 | 1596 | 1335 179.3 | 135.8
202.8 | 156.3 165.2 | 164.9 | 176.4 | 150.3 | 201.5| 160.2
2121 175.1 | 1779 | 175.9 | 1923 | 163.8 | 220.6| 164.5
I i |
228.6 | 188.4 195.3 | 188.2 | 204.9 | 175.6 | 236.3 | 186.4
267.4 | 209.3 | 201.7 | 206.9 @ 211.3 187.8 | 268.7  207.8
280.8 | 2338 | 2117 | 2226 | 2229 | 207.0 | 289.8| 2222
3083 | 247.0 | 2301 2337 | 230.0 | 208 | 295.6 231.8
319.4 | 27100 ‘ 233.6 | 246.9 | 237.9 | 2340 | 304.0| 240.9
340.0 | 285.7 | 250.3 | 270.0 | 253.5 | 250.0 | 317.9| 254.1
369.2 | 305.0 ‘ 268.4 | 297.8 | 268.2 | 270.1 336.1| 261.5
400.1 328.3 | 285.9 | 312.6 | 289.8 | 290.6 | 344.7| 269.6
4296 | 341.7 | 3159 | 319.3 | 318.4 | 3106 | 371.1| 289.4
461.6 | 359.3 | 325.3 | 340.2 @ 340.4 | 3@7.3 | 399.3| 311.4
545.5 | 3712 3413 | 3587 | 360.8 | 2.1 | 4114 325.1
569.5 | 414.0 | 370.6 | 386.8 = 371.7 @ 3609 | 4I8.6 349 1
596.6 | 435.8 | 381.3 | 4109 @ 398.0 | 3707 | 420.8 | 362.8
627.7 | 463.0 | 398.1 | 415.0 | 405.5 | 411.2 @ 463.0| 411.9
693.0 | 490.0 ‘ 412.2 | 4337 | 424.6 | 418.5 | 487.5 | 419.4
832.0 | 504.5 | 428.5 = 442.4 | 504.8 | 434.5 | 507.5| 433.6
935.0 | 538.0 | 468.0 | 457.7 | 510.5 | 4797 | 555.0 | 437.4
973.5 | 664.9 = 504.6 | 489.2 | 555.1 | 4890.5 | 561.8| 463.5
9925 | 69.9 @ 516.1 504.9 | 559.7 | 505.3 | 595.6| 482.8
1,024.8 | 732.9 | 536.5 | 5104 | 595.6 | 5129 | 637.9| 513.9
1,045.9 | 768.9 | 544.8 = 534.0 | 634.3 | 532.0 | 694.3| 533.8
1,098.4 | 799.7 | 557.9 | 551.5 | 649.9 | 5450 | 718.8 | 669.4
840.8 | 597.0 | 672.1 | 674.5 | 668.7 | 790.3 | 687.8
868.8 | 629.0 | 744.9 | 6952 | 697.3 | 821.9| 745.3
885.3 | 638.0 | 780.1 | 716.8 | 744.1 833.6 | 767.6
899.1 | 651.8 | 806.9 | 793.7 | 783.1 | 966.6| 776.5
940.0 | 696.1 828.2 | 980.5 | 806.0 | 990.4 | 792.4
743.3 | 843.8 | 1,003.5 | 825.0 |1,003.6| 813.7
79.7 | 872.0 | 1,008.4 | 843.0 | 1.031.6| 831.2
817.5 | 883.6 | 1.036.5 | 871.6 | 1.045.6 | 870.6
964.6 | 925.9 | 1,046.0 @ $86.0 | 1,092.2 | 879.9
975.2 | 934.3 | 1.088.1 895.0 | 1.112.2 | 895.6
984.7 | 1,105.0 @ 9269 |1,131.1 | 907.4
1,002.0 | 1,121.4 | 943.5 948.9
1,026.7 1,129.1
1,044.9
1.09.3
1,121.6
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4. CONCLUSIONS

KTP and KTA crystals exhibit an apparently different Raman
spectra for their LO and TO modes in the frequency range 400-650 cm™".
The substitution ions in XO, group (X=P or As) modifing the force
constant of crystal play an important role for the difference between
KTP and KTA in the middle-frequency region. The relative intensity
of low frequency bands shows to increases with increasing temperature.
This anomaly is attributed to the change of K* ion mobility. A
softening behavior has been observed on several LO and TO modes as
increasing temperature. However, there is no typical soft-mode like
behavior in the measured frequency range. A higher symmetric structure
taking place above 7, has been confirmed by the disappearance of the
LO (A,,) stretching modes of TiO, group. Comparison of each frequency
belonging to the symmetry A,, A,, B, and B, measured along the [110]
phonon direction shows complex difference.
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THE SIZE EFFECT OF SUBSTITUENTS IN
SOLID-STATE PHOTODIMERIZATION
OF CHALCONE DERIVATIVES

JuNG-NAN CHEN
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ABSTRACT

The photochemistry of a series of 4,4’-diacyloxychalcone in solid
state were studied. A significant size effect of the acyl groups on
the solid photodimerization reactivity and products distribution was
found. All possible (2+2) photodimers with the same skeleton of
4,4’~dihydroxychalcone but different in acyl groups were synthesized
and studied. The selectivity is explained in turns of the size effect.

Key Words: Photodimerization, Chalcones, 4,4’-Diacyloxychalcones.

1. INTRODUCTION

Chalcone (1, 3-diphenyl-2-propene-1-one, I) may undergo (2+2)
photodimerization in solid state, polymerization or cis-lrans isomerization
in liquid or solution under the irradiation of UV light®~*, The
derivatives of chalcones are increasingly important in materials technology.
4, 4'-Diglycidyl-chalcone (DGE-chalcone) for example is a dual functional
epoxy resins and is widely used as photoresist®’®.

In our studies of epoxy resin, the synthesis of 4,4’-dihydroxychalcone
(I,) photodimers is required. Not all the chalcones can undergo (2+2)
photodimerization. 4, 4’-Dihydroxychalcone (I,), for example, can proceed
polymerization in solid state or in solution. According to Schmidt
et al.®*®, the solid photodimerization is governed by the crystal
arrangement of molecules. The separation of double bounds between
the nearest molecules in solid must be in the range of 3.5~4." A. Since
no study on (242) photodimers with the same skeleton of chalcones
was reported so far. Extensive study of (2+2) photodimers of 4,4'-
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dihydroxychalcone and the study of the structure are attractive. The
size effect of the substituent on the molecular arrangement in a unit
cell of crystals is quite well known. Thus, a series of the ester
derivatives of 4,4’-dihydroxychalcone with acyl group of various sizes
have been synthesized as starting materials to vary the size effect on
reactivities of chalcones and product distribution.

2. RESULT AND DISCUSSION

Basically solid state photodimerization of chalcones may have
four different kinds of stereoisomers: syn-head-to-head (syn H-H, II),
anti-head-to-head (anti H-H, III), syn-head-to-tail (syn H-T, IV) and
anti-head-to-tail (anti H-T, V) (Scheme 1). Several different carboxylic
esters (I,~I,) were obtained from 4,4’-dihydroxychalcone. We found
that the size change can affect solid photodimerization both in reactivity
and products distribution. Through this method we can obtain all
photodimers of 4,4’-dihydroxychalcone.

Scheme 1
Ar
Ar Ar |
W }%ﬁf
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Ar H hv Ar ()
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(1) Ar=CgHs. Ar=CgHs.
(la) Ar=4-HOCgHs. Ar=4-HOCgHs.

(Ib) Ar=4-CHCOOCgH,  Ar=4-CHyCOOCgH,.

(lc) Ar=4-CHyCH,COOCgH,;  Ar=4-CH;CH,COOCgH,.

(d) A= 4-CHy,CH,CH,COOCeH,.  Ar=4-CH;CH,CH,CO0CsH,.
(le) Ar=4-CHy),CHCOOCgH,.  Ar=4{CHg),CHCOOCeH,.
(F) Ar=4-CgHsCOOCgH,.  Ar=4-CgHsCOOCeH,.
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Table 1 lists the results of these chalcones after UV light irradiation.
The ester derivatives with different acyl groups showed various reactivites
and products distribution of photodimerization. Under UV irradiation
4,4’-diacetoxychalcone (I,) yield stereospecific dimerization product, syn
H-T IV,. Similary 4,4’-dipropionoxychalcone (I,) produced a mixture
os syn H-T 1IV,, anti H-H III, and syn H-H II. as the trace
products. 4,4’-Dibutyroxychalcone (I,) produced a different mixture
of syn H-T 1V,, syn H-H II, and anti H-T V, as trace products.
4, 4’-Diisobutyroxychalcone (I,) is a photosensitive compound. It dimerizes
readily to give a highly stereoselective product syn H-T IV, in greater
than 999 yield. The solid of 4,4’-dibenzoxychalcone (I,) was photostable
and no reaction was observed after prolonged irradiation.

Table 1. Products distribution of solid photodimerization of
4,4’-diacyloxychalcones

Reagent® Irradiation time ] Product (Yield)
I, 10 days Vs (70%)
g I, (trace)
I. 30 days ‘ . ( 3%)
V. (27%)
. (16%)
I, 30 days { Vs (20%)
Va ( 4%)
I, (trace
1; 2 days { ( )
vV, (>99%)
I, 10 days | NR
* I,: Ar=Ar'=4-CH,COOC,H,- I: Ar=Ar'=4-CH,CHCOOC,H,-CH,

I.: Ar=Ar’=4-CH,CH,COOCH,- I;: Ar=Ar'=4-C;H;COOCH,-
I;: Ar=Ar'=4-CH,CH,CH,COOCH,-

The couformations of cvclobuane have been discussed’. The
conformations of these photodimers are depicted in Scheme 2; Syn H-H
dimer as VI and VII, anti H-H dimer as VIII, syn H-H dimer as IX
and X, and anti H-T dimer as XI. Table 2 lists of all the 'H NMR
data of the hydrogens on the cyclobutane of dimeric products. All of
them show characteristic signals around 3.8~5.2 ppm. Dimer of anti
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Scheme 2
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H-T as V shows a A,X, pattern, and all the others are of AA’BB’
patterns. V, has the major conformation as XI. All protons on the
cyclobutane ring are in the axial-like position and the phenyl or benzoyl
groups are in the equatorial-like position. In this case the protons a
to the benzoyl groups are in the position shielded by benzene rings.
Therefore the protons on the cyclobutane ring a« to benzoyl groups of
V., show signals on higher field. Dimer of anti H-H as III, have the
major conformation as VIII which is similar to the conformation as XI.
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Table 2. The 'H NMR datas of hydrogens on cyclobutane of
dimer products

Dimer Proton NMR data (5, DMSO-d,)

vV, 4.8~5.0 4H, m)

m. 4,58 (2H, 4, J=9.0Hz), 3.90 (2H, 4, J=9.0Hz)
IV, 4.8~5.0 (4H, m)

s 5.12 2H, 4, J=5.3Hz), 4.29 (2H, d, J=5.3Hz)
V4 4.8~5.0 4H, m)

Va 4.55 (2H, ¢, J=9.0Hz), 3.89 (2H, ¢, J=9.0Hz)
v, 5.0~4.8 (4H, m)

All protons on cyclobutane ring must be in the axial-like position while
all phenyl and benzoyl groups are in equatorial-like position. Those
protons are all in the shielded region of the benzene ring. So they
show the signals of a higher field also. Furthermore the dihedral angle
of the neighboring protons are nearly equal for XI and VIII, such that
they have similar coupling constants (J=~9 Hz). The protons on the
cyclobutane ring of IIl, show AA’BB’ patterns with Japr=~0Hz and
Jars=~0Hz. So they show two doublet with J=9Hz. The conforma-
tions of syn H-H as II, are in rapid equilibrium between VI and VIL
Both phenyl and benzoyl groups are too crowded to be in axial-like
position. In this case the protons on the cyclobutane ring are not
shielded by the benzene ring; Their NMR signals are in normal
distribution. Protons a to benzoyl groups are in lower field (~5.1ppm)
and benzylic to phenyl groups are in higher field (~4.3ppm). All of
them belong to AA’BB’ patterns. Since J,5r—=0Hz, J,s~=0Hz and
their dihedral angle are not the same as that of in XI and VIIIL
two doublets with J=5.3Hz are observed. The conformations of syn
H-T as IV, are in rapid equilibrium between IX and X. Like II,, the
protons on cyclobutane ring are not shielded by benzene ring. However
these protons are in the position of ar and BB to benzoyl groups.
Therefore the difference of their chemical shift are small (~4.95 and
~4.89 ppm) and J,5FJ 450 Hz (Or J,pen,7J 70 Hz). So they show
signals in typical AA’BB’ patterns with multiplets at 4.92ppm. These
types of NMR signals of photodimer of chalcones have been reported
by us(lﬂgll).
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The stereo-structure of 4,4’-dipropionoxychalcone (I.) and 4,4’-
diisobutyroxychalcone (I,) studied by X-ray
diffraction as shown in Figs. 1 and 2. Their atomic positional parameters
are list in Tables 3 and 4. Their crystal data are list in Table 5. The
molecular arrangement in the unit cell of I, and I, are shown in Figs.
3 and 4. The relative atomic positional parameters of carbon-carbon
double bonds in the unit cell of I, and I, are list in Tables 6 and 7.

in crystal have been

Table 3. Fractional atomic coordinates, with standard deviations in

parenthesis, for 4,4’-dipropionoxychalcone (I.)

‘ X Y Z | Beq
c1 0.2075 (4) 0.2253 (5) 0.13725 (7) 5.73 (1)
c2 0.3250 (4) 0.1562 (5) 0.16372 (7) 6.37 (24)
63 | o4 (4 0.0742(4) |  0.16044 (7) 5.31 (21)
c4 | 0.5008 (4) 0.0612(4) | 0.13212(7) 5.09 (20)
C5 | 0.4451 (4) 0.1300 (5) 0.10600 (7) |  4.89(19)
cé 0.3283 ( 3) 0.2151 (4) 0.10808 (7) 4.49 (18)
c7 0.2620 ( 4) 0.2872 (4) 0.08188 (7) 4.92(19)
of 0.3069 ( 3) 0.2972 (4) 0.05274 (7) 4.44 (18)
ol 0.2279 ( 3) 0.3775 (4) 0.02852 (7) 4.51 (18)
cl10 0.2788 ( 3) 0.4031(4) | —0.00368 (7) 4.08(17)
cl 0.1977 ( 3) 0.4802(5) | —0.02492 (8) 5.40 (20)
c12 0.2401 ( 4) 0.5138(5) | —0.05471 (7) 5.74 (21)
c13 0.3645 ( 3) 0.4687 (4) | —0.06319 (7) 4.91 (19)
cl4a | 0.4851 (4) 0.3923(5) | —0.04327 (D) 5.45 (20)
ci1s 0.4032 ( 3) 0.3590(4) | —0.01322(7) | 5.00(19)
016 0.11809 (24) 0.4280 (3) 0.03521 (5) | 6.62(16)
017 0.4913 (3) | —0.009 (3) 0.18581 () |  7.04(16)
ci8 0.5483 ( 4) 0.0678 (5) 0.20940 () |  6.10(24)
c19 0.5996 (5) | —0.0444 (5) 0.23276 (8) 7.7 (3)
€20 0.6786 ( 5) 0.0271 (6) 0.25767 (9) 9.3 (3
021 0.5561 ( 3) 0.2075 (3) 0.21014 (6) 8.95 (19)
022 0.4102 (3) 0.5141(3) | —0.09246 (5) 6.23 (15)
c23 0.3865 (4) 0.5232(4) | —0.11678(8) 5.49 21)
C24 0.4246 ( 4) 0.4990(5) | —0.14636 (8) 6.98 (25)
c2s 0.3963 (5)  0.412(6) | —0.17466(9) | 9.8 (3
026 0.3376 ( 3) 0.2959(3) | —0.1415(6) | 9.04(19)
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Table 4. Fractional atomic coordinates, with standard deviations in

parenthesis, for 4,4’-diisobutyroxychalcone (I,)

X : Y Z ‘ Beq
Cl 0.7142( 7) 0.243( 5) 0.2074 (13) 5. T.(15)
c2 0.6886 ( 8) 0.312( 6) 0.2520 (18) 8.3 (21
C3 0.6618 ( 7) 0.167 ( 5) 0.2651 (14) 5.9 (16)
C4 0.6600 ( 7) —0.045( 6) 0.2350 (17) 7.0(19)
Cs5 0.6840 ( 7) —0.109 ( 6) 0.1882 (15) 6.9 (17)
Cé6 0.7114 ( 6) 0.036 ( 5) 0.1751 (12) 5.2 (15)
C17 0.7384 ( 7) —0.044 ( 5) 0.1276 (15) 6.1 (16)
07 0.7382( 6) —0.245(4) | 0.1092 (12) 9.8 (14)
C8 | 0.7642 ( 7) 0.116 ( 5) 0.0999 (16) 6.8 (18)
Cco 0.7844 ( 7) 0.044 ( 6) | 0.0487 (13) 6.2 (17)
clo 0.8123( 6) 0.188( 5) | 0.0188 (12) 4.6 (15)
Cc11 0.8221( 8) 0.403( 5) | 0.0428 (16) 7.3 (18)
ci2 0.8499 ( 8) 0.517( 6) 0.0180 (15) 7.0(18)
Cl3 0.8668 ( 7) 0.427( 5) —0.0345 (15) 6.9 (18)
Cl4 0.8587 ( 8) 0.215( 6) —0.0597 (17) 7.9 (19)
cl15 0.8299( 8) 0.098 ( 5) —0.0335 (15) 6.7 (17)
(031 0.6377( 5) 0.230( 4) 0.3137( 9 8.0(12)
C17 0.6093 ( 8) 0.350( 6) | 0.2886 (16) 8.9 (21)
Q17 0.6038 ( 6) 0.409( 6) \ 0.2249 (11) 13.3 (19)
Cl8 0.5842( 9) 0.406 ( 8) 0.3399 (17) 11.4 (27)
ci9 0.5834 (14) 0.638 (11) 0.3567 (25) 19.7 (44)
C20 0.5508 (14) 0.339 (11) 0.329 ( 3) 21.4 (49)
C21 0.8902 ( 5) 0.567 ( 4) —0.0715 (12) 9.5(14)
Cc22 0.9237( 9) 0.555( 8) —0.0486 (22) 11.8 (28)
023 0.9362 ( 7) 0.439( 8) —0.0043 (18) 19.3 (29)
C24 | 0.9458 (12) 0.689 ( 8) —0.099 ( 3) 17.4 (39)
C25 0.9636 (13) 0.871 (10) —0.063 ( 3) 18.7 (43)
C26 i 0.9689 (13) 0.565 (11) —0.1406 (21) 16.9 (42)

The separation of carbon-carbon double bonds between the nearest
molecules of I, is 429 A exceeding the upper limit of 4.2A. Thus I,
photodimerized slowly. The orientation of double bonds are not parallel
Therefore 1. gives mixed products of syn H-T and

The separation of double bonds between the nearest

to each other.
anti H-H dimers.
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Table 5. Crystal data for I, and I,

Compound I I,
Formula CuO:H;; C.:.0H,,
Fw 352.39 380.44
Space group Pbca C2/c
a, A 10.2399 (9) 37.142 (13)
b, A 8.4575 (6) 5.9373 (14)
c, A 442.873 (3) 18.885 (5)
8, deg 95.52 (3)
vV, A 3,713.0 (5) 4,145.3 (20)
z 8 8
D (caled), geecm™? 1.261 1.219
A, A 1.54056 0.70930
F(000) 1,487.83 1,743.80
Temperature 208 K 298 K
# (mm™!) 0.70 0.08
20max 119.9 45.0
Octants (k, k, ¢) 0~11, 0~9, 0~48 —40~39, 0~6, 0~21
No. of unique refins 2,760 2717
No. of obs. reflns 1,905 (>>20) 850 (>20)
No. of variables 235 254
R(F) 0.063 0.089
Rw(F) 0.049 0.087
S 3.11 1.39

ﬁi

S5l

gge=c

AT

~F

<o L
Fig. 3. Molecular arrangement in the unit cell of 4,4’-dipropionoxychalcone.
[ AN , | t
P =)
N: % Vl:% I bi i 'i\&—\/
i bl . n Y L
= T 1 i S !
N7
Fig. 4. Molecular arrangement in the unit cell of 4,4’-diisobutyroxychalcone.
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Table 6. The relative atomic positions of carbon-carbon double
bonds in a unit cell of 4,4’-dipropinoxychalcone (I.)

Orginal Atomic Position' 0.26204 | 0.28720 | 0.08188 |
/ 0.26204 | 0.28720 | 0.08188 X Y z
| 0.73796 | 0.71280 | 0.918I2 - —Y -z |d, 1,1
. 0.23796 | 0.78720 | 0.08188 | 3—X 3+Y Z
- | 0.76204 | 0.21280 | 0.91812 | #+X §—¥ -z |@© 0,1
| 0.26204 | 0.21280 | 0.58188 X | 3-r Lz
0.73796 | 0.78720 | 0.41812 ¥ Y =2 | @00
| 0.2379 | 0.71280 | 0.58188 | #—X —-Y 3+Z | (©, 1, 0)
L 0.76204 | 0.28720 | 0.41812| 3+X Y g2
Orginal | Atomic | Position\ 0.30695 | 0.29723 ‘ 0.05274 ‘
/ 0.30695 | 0.29723 | 0.05274 X ¥ z
0.69305 | 0.70277 | 0.94726 -X = —Z |8 D
0.19305 | 0.79723 | 0.05274 | +—X ba¥ z
cg | 08065 0.20277 | 0.94726 | +X by —-Z | (0,0, 1)
0.30695 | 0.20277 | 0.55274 X Y y+Z
0.69305 | 0.79723 | 0.44726 i 34+Y 3—Z |, 0,0
0.19305 | 0.70277 | 0.55274 | 3—X — 3+Z | ©, 1, 0)
0.80695 | 0.29723 | 0.44726 | 3+X Y 7
Table 7. The relative atomic positions of carbon-carbon double
bonds in a unit cell of 4,4’-diisobutyroxychalcone (I,)
Orginal Atomic | Position | —0.07952| 0.26801 % 0.32892
0.92048 | 0.26801 | 0.32892 X Y Z |(@,0,0
cg | 042048 | 023199 | 0.67108 | j+X p¥ ~Z |10, 0; 1)
0.07952 | 0.76801 | 0.17108 —X ol =7
0.57952 | 0.73199 | 0.82892 | }—X -y 1+Z |, 1,0
Orginal Atomic Wposition |—0.o3986| 0.19916 | 0.29062 |
0.96014 | 0.19916 | 0.29062 b'e Y z |a,o0,0
o ) 0-46014 | 0.30084 | 0.70938 | 3+X 3P —Z [(,0, 1)
0.03986 | 0.69916 | 0.20938 X 3+Y 1—Z
0.53986 | 0.80084 | 0.79062 | 3—X Y 1+Z |, 1,0
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molecules of I, is 3.89 A and parallel to each other. The distance is
within the limit of 4.2A. The orientation arrangement of molecules is
in centrosymmetric way. So it gives the photodimer of syn H-T after
UV irradiation in solid state. These X-ray data along with the result
of photodimerization confirm the conclusions of Schmidt’s proposal.
Although various methods of recrystallizing I,, I, and I, had been tried,
no single crystal of good quality was obtained.

By changing the size of the acyl group of 4,4'-diacyloxychalcones,
all four possible photodimers of 4,4’-dihydroxychalcone skeleton are
obtained in the solid state photolysis. Hydrogens on the cyclobutane
ring show characteristic NMR signals for all photodimers, which can
be very useful for the identifcation of the photodimerization products
of other chalcones. However, most 4,4'-diacyloxychalcones photo-
dimerized slowly except I,, with syn H-T dimer as the major product.
How to increase the quantum yield of photodimerization and how to
control the products distribution are quite interesting. Further works
are in progress.

3. EXPERIMENTAL SECTION

Melting points are uncorrected. NMR spectra were obtained on a
Bruker AC-300 (300 MHz) NMR spectrometer. IR spectra were measured
on a Perkin-Elmer 983 IR spectrophotometer. Mass spectra were obtained
on a Jeol JMS-D100 Mass spectrometer. UV spectra were measured
on Shimadzu UV-160 UV-Vis spectrophotometer. A UVP Blak-ray
Ultraviolet Lamp Model B-100 AP was used as the UV light source for
photoreaction.

(1) 4, 4’-Dihydroxychalcone (I,)

To a mixture of 4-hydroxybenzaldehyde (12.2g, 0.1mol) and 4'-
hydroxyacetophenone )13.6 g, 0.1 mol) in ethanol (50 ml) was added KOH
solution (70 g, 40%) slowly. The reaction mixture was kept at 50°C
for 20 hr. Then the mixture was poured into ice cold water (500 ml)
and neutralized with HCI (0.1N) with vigorous stirring. The yellow
powder was collected and recrystalized from THF to get I, (19.2 g, 80%);
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mp. 203~206°C; UV 2, 340.4nm (e 29,600); IR (cm™') 3,476, 3,099,
1,638, 1,602, 1,549, 1,506, 1,447, 1,345, 1,277, 1,226, 1,167, 1,050, 992, 824,
754, 682; 'H NMR (DMSO-d,) & 10.39 (1H, s), 10.07 (1H, s) 8.02 (2H, d,
J=8.6 Hz), 7.69 (2H, d, J=8.6 Hz), 7.69 (1H, d, J=15.4Hz), 7.61 (1H, d,
J=154Hz), 6.89 (2H, d, J=8.6 Hz), 6.82 (2H, d, J=8.6 Hz); “*C NMR
(DMSO-d,) & 187.5, 162.1, 160.0, 131.4, 131.2, 130.8, 130.6, 129.7, 126.2,
116.3, 115.8, 115.3.

(2) General procedure for the preparation of 4, 4'-diacyloxychalcones
(Ib"“If)

All 4,4’-diacyloxychalcones were prepared by mixing equimolar ratio
of 4,4’-dihydroxychalcone and the corresponding acyl chloride in
pyridine. The mixture was then washed with water and HCI (0.1 N) to
remove pyridinium chloride and excess pyridine. The products were
recrystalized from ethanol.

(3) 4,4'-Diacetoxychalcone (I,)

Pale yellow crystal: mp. 124~125°C: UV Ai,,. 3140 nm (¢ 22,400);
IR (cm™') 3,040, 2,950, 1,750, 1,663, 1,609, 1,596, 1,579, 1,500, 1,413, 1,378,
1,331, 1,300, 1,226, 1,165, 1,110, 1,033, 1,013, 983, 955, 850, 817, 765, 751,
712, 687, 650; 'H NMR (DMSO-d,) & 8.22 (2H, d, J=8.6 Hz), 7.94 (2H,
d, J=85Hz), 793 (IH, d, J=15.6Hz), 7.75 (IH, d, J=15.6 Hz), 7.33
(2H, d, J=8.6Hz), 7.27 (2H, d, J=85Hz), 2.30 (3H, s), 2.28 (3H, s);
*C NMR (DMSO-d,) & 188.4, 168.9, 168.8, 154.1, 152.2, 135.1, 132.3,
130.5, 130.4, 129.8, 122.6, 122.4, 122.1.

(4) 4,4'-Dipropionoxychalcone (I.)

Pale yellow crystal: mp. 112~113°C; UV 4,,. 3148 nm (e 22,600);
IR (cm™") 3,040, 2,950, 1,752, 1,656, 1,605, 1,594, 1,577, 1,500, 1,459, 1.414,
1,357, 1,335, 1,301, 1,289, 1,214, 1,167, 1,150, 1,079, 1,035, 1,014, 984, 942,
903, 839, 809, 761, 713; 'H NMR (DMSO-d,) é 8.23 (2H, 4, J=8.6 Hz),
7.95 (2H, d, J=8.6 Hz), 794 (1H, d, J=15.6 Hz), 7.75 (1H, d, J=15.6 Hz),
7.33 (2H, d, J=8.6 Hz), 7.23 (2H, d, J=8.6 Hz), 2.6~2.7 (4H, m), 1.1~1.7
(6H, m); '*C NMR (DMSO-d,) & 188.0, 172.3, 172.1, 154.2, 152.2, 135.0,
132.2, 130.4, 129.7, 122.5, 122.4, 122.0, 121.8, 27.1, 26.9, 8.85, 8.46.
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(5) 4,4’-Dibutyroxychalcone (I,)

Pale yellow crystal: mp. 117~118°C; UV 4,,, 313.2nm (¢ 23,800);
IR (cm™') 3,050, 2,958, 2,871, 1,743, 1,655, 1,599, 1,575, 1,500, 1,459, 1,412,
1,378, 1,364, 1,327, 1,304, 1,279, 1,214, 1,171, 1,145, 1,100, 1,077, 1,026,
1,015, 986, 951, 924, 876, 831, 821, 754; ‘H NMR (DMSO-d,) & 8.22 (2H,
d, J=8.6 Hz), 7.95 (2H, d, J=8.5Hz), 7.93 (1H, 4, J=15.6 Hz), 7.75 (1H,
d, J=15.6 Hz), 7.33 (2H, d, J=8.6Hz), 7.23 (2H, d, J=85Hz), 2.5~2.7
(4H, m), 1.6~1.7 (4H, m), 0.9~1.0 (6H, m); C NMR (DMSO-d,) & 183.0,
1714, 171.3, 154.2, 152.3, 143.1, 135.1, 132.3, 130.2, 130.1, 122.3, 122.2,
122.0, 35.3, 178.8, 13.3.

(6) 4,4’-Diisobutyroxychlcone (I,)

Pale yellow crystal: mp. 165~168°C; UV 2,,. 313.2nm (¢ 23,200);
IR (cm™") 3,050, 2,971, 2,357, 1,750, 1,656, 1,605, 1,596, 1,578, 1,500, 1,465,
1,415, 1,383, 1,212, 1,181, 1,166, 1,128, 1,028, 1,012, 984, 882, 859, 806;
'H NMR (DMSO-d,) & 823 (2H, d, J=8.6Hz), 7.95 (2H, d, J=8.7Hz),
7.94 (1H, d, J=15.6 Hz), 7.75 (1H, d, J=15.6 Hz), 7.23 (2H, d, J=8.6 Hz),
7.21 (2H, d, J=8.7Hz), 2.9~2.8 (2H, m), 1.3~1.2 (12H, m); "C NMR
(DMSO-d,) & 188.0, 174.8, 174.5, 154.5, 154.3, 143.1, 135.1, 132.3, 130.3,
130.1, 122.2, 122.1, 121.5, 33.4, 33.3, 18.5.

(7) 4,4’-Dibenzoyloxychalcone (I,)

Yellow crystal: mp. 184~186°C; UV 4,,. 316.0nm (e 22,800);
IR (cm™?) 3,080, 1,732, 1,662, 1,605, 1,580, 1,500, 1,449, 1,412, 1,332, 1,265,
1,212, 1,196, 1,181, 1,165, 1,080, 1,065, 1,024, 989, 881, 863, 806, 701;
'"H NMR (DMSO-4,) & 8.31 (2H, 4, J=8.7Hz), 8.17 (2H, d, J=7.2 Hz),
8.15 (2H, d, J=7.2Hz), 8.04 (2H, d, J=8.7Hz), 8.02 (1H, d, J=15.6 Hz),
7.81 (1H, d, J=15.6 Hz), 7.77 (2H, ¢, J=72Hz), 7.63 (2H, {, J=7.2 Hz),
7.62 (2H, t, J=7.2Hz), 7.52 2H, d, J=8.7Hz), 7.42 (2H, d, J=8.7 Hz);
»C NMR (DMSO-4,) & 188.0, 164.3, 164.1, 154.2, 152.4, 143.1, 1353,
134.2, 134.1, 1325, 130.2, 130.1, 129.8, 129.7, 128.9, 128.7, 128.6, 122.4,
122.3, 122.1.
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(8) General procedure for solid photodimerization

4,4’-Diacyloxychalcone (0.1 mol) was added to a 500 ml Pyrex flask,
which was rotated by a spinner. Then the UV lamp was turned on.
After 1hr, 2hr, 4hr, 8hr, 24 hr, 2days, 5days, 10days, 20days and
30 days, Sample (a few mgs) was withdrawn and monitored by NMR.
The results are presented in Table 1 and the procedure for the isolation
of dimers described below.

(9) Syn H-T photodimer of 4, 4’-diacetoxychalcone (IV,)

After the unreacted 4,4’-diacetoxychalcone was extracted with
boiling acetone. The resulting white powder was recrystalized from
chloroform to get white crystal IV,; mp. 254~256°C; UV An,. 257 nm
(e 19,600); IR (cm™') 3,050, 1,744, 1,670, 1,596, 1,502, 1,407, 1,368, 1,311,
1,260, 1,216 1,202, 1,166, 1,104, 1,049, 913, 854, 799, 701; 'H NMR
(DMSO-d,) & 7.83 (4H, d, J=8.5Hz), 7.30 (4H, d, J=8.4Hz), 7.13 (4H,
d, J=8.5Hz), 6.84 (4H, d, J=8.4 Hz), 5.0~4.8 (4H, m), 2.26 (6H, s), 2.17
(6H, s); C NMR (DMSO-d,) & 197.3, 168.8, 168.5, 153.8, 148.9, 136.5,
133.8, 129.7, 129.0, 121.7, 121.0, 49.4, 40.9, 20.8, 20.7; MS (70eV) m/e (%
649 (M*, 5), 325 (30), 307 (48), 289 (20), 154 (100), 136 (65), 107 (20);
Anal. Calcd for C,,H,,0,,: C, 70.36, H, 497. Found: C, 70.50, H, 4.99.

(10) Syn H-T photodimer of 4, 4’-dipropionoxychalcone (IV,)

After the unreacted 4,4’-dipropionoxychalcone was extracted with
boiling #-hexane. The resulting white powder was recrystalized from
chloroform to get white crystal IV,; mp. 222~224°C; UV 2,,. 258 nm
(e 19,600); IR (cm~*) 3,050, 2,980, 1,758, 1,666, 1,597, 1,502, 1,459, 1,411,
1,352, 1,314, 1,352, 1,314, 1,261, 1,203, 1,166, 1,140, 1,076, 1,015, 982, 892,
837; 'H NMR (DMSO-d,) & 7.85 (4H, d, J=8.7Hz), 7.31 (4H, 4, J=
8.6 Hz), 7.14 (4H, d, J=8.7 Hz), 6.85 (4H, d, J=8.6 Hz), 5.0~4.8 (4H, m),
2.5~2.7 (8H, m), 1.2~1.0 (12H, m); C NMR (DMSO-d,) & 197.4, 172.3,
172.0, 154.0, 149.0, 136.5, 133.7, 129.8, 129.1, 121.7, 121.1, 49.5, 41.0, 26.9,
26.8, 8.75, 8.70; MS (70eV) m/e (%) 704 (M*, 5), 527 (10), 353 (10),
352 (10), 296 (50), 240 (100), 121 (35); Amnal. Calcd for Ci:HitOi: €,
71.76, H, 5.65. Found: C, 71.58, H. 5.82.
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(11) Anti H-H photodimer of 4, 4’-dipropionoxychalcone (III,)

The residue of mother liquid of IV, was fractional recrystalized
from ethanol—n-hexane (1:1) to get tiny needle crystal III.: mp. 105~
107°C; UV 2,,. 257nm (¢ 18,900); IR (em™') 3,050, 2,981, 1,758, 1,662,
1,596, 1,502, 1,459, 1,412, 1,350, 1,210, 1,165, 1,140, 1,076, 1,014, 982, 851,
759; 'H NMR (DMSO-d,) & 7.82 (4H, d, J=8.7Hz), 7.37 (4H, d, J=
8.5Hz), 7.12 (4H, d, J=8.7Hz), 7.07 (4H, d, J=8.5Hz), 458 (2H, d,
J=9.0Hz), 3.90 (2H, d, J=9.0Hz), 2.6~2.5 (8H, m), 1.2~1.0 (12H, m);
»C NMR (DMSO-d,) & 197.1, 172.4, 171.9, 154.5, 149.5, 138.3, 132.7,
130.1, 128.2, 121.9, 47.2, 46.4, 26.8, 8.72, 8.58; MS (70eV) m/e (%) 705
(M*+1, 40), 627 (10), 381 (85), 353 (45), 325 (40), 296 (45), 269 (20), 240
(30), 212 (20), 177 (20), 154 (40), 136 (35), 121 (100), 57 (35); Anal. Calcd
for C,,H,,0,,: C, 71.58, H, 5.72. Found: C, 71.64, 5.58.

(12) Syn H-T photodimer of 4, 4’-dibutyroxychalcone (IV,)

After the unreacted 4,4'-dibutyroxychalcone was extracted with
boiling #-hexane. The resulting white powder was recrystalized from
chloroform to get white crystal IV,; mp. 117~118°C; UV i, 257 nm
(e 19,200); IR (cm™!) 3,050, 2,967, 1,756, 1,663, 1,596, 1,502, 1,459, 1,410,
1,357, 1,301, 1,260, 1,237, 1,202, 1,166, 1,147, 1,077, 1,047, 1,018, 985 920,
846; 'H NMR (DMSO-d,) & 7.84 (4H, d, J=8.7Hz), 7.30 (4H, 4, J=
8.5Hz), 7.12 (4H, d, J=8.7 Hz), 6.84 (4H, d, J=8.5 Hz), 5.0~5.4 (4H, m).
2.6~2.4 (8H, m), 1.66~1.58 (8H, m), 1.0~08 (12H, m); "“C NMR
(DMSO-d,) & 197.3, 171.3, 171.0, 153.8, 148.9, 136.4, 133.7, 129.7, 129.0,
121.6, 121.0, 49.4, 41.2, 35.2, 35.1, 17.7, 13.3; MS (70eV) m/e (%) 761
(M*+1, 5), 569 (10), 380 (35), 310 (95), 240 (100), 70 (35); Anal. Calcd
for C,,H,,0,,: C, 72.61, H, 6.36. Found: C, 72.66, H, 6.21.

(13) Syn H-H photodimer of 4, 4’-dibutyroxychalcone (II,)

The residue of mother liquid of IV, was fractional recrystalized in
ethanol—benzene (1:1) to get tiny needle crystal II,: mp. 158~159°C;
UV Z,,. 253nm (¢ 19,100); IR (cm™?) 3,050, 2,965, 1,756, 1,677, 1,597,
1,503, 1,411, 1,356, 1,208, 1,165, 1,097, 925, 865; 'H NMR (DMSO-d,)
& 7.91 (4H, d, J=8.4 Hz), 7.23 (4H, d, J=8.1 Hz), 7.19 (4H, d, J=8.4 Hz),
6.90 (4H, d, J=8.1Hz), 5.12 (2H, 4, J=5.4Hz), 429 (2H, d. J=5.4Hz),
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2.6~2.4 (8H, m), 1.7~1.5 (8H, m) 1.0~0.8 (12H, m); “C NMR (DMSO-d,)
6 196.8, 171.1, 170.8, 153.7, 148.4, 136.0, 132.7, 129.2, 128.3, 121.7, 120.7,
472, 43.5, 350, 17.5, 174, 125, 12.4; MS (70¢eV) mfe (%) 761 (M*-+1,
50), 569 (45), 409 (55), 381 (30), 339 (40), 310 (32), 269 (25), 240 (30), 191
(18), 175 (20), 121 (100), 71 (25); Anal. Calcd for C.,H,,0,,: C, 72561,
H, 6.36. Found: C, 72.69, H, 6.23.

(14) Anti H-T photodimer of 4, 4'-dibutyroxychalcone (Va)

The residue of mother liquid of II, was fractional recrystalized
from ethanol—#n-hexane (1:1) to get tiny needle crystal V,: mp. 142~
143°C; UV Z,,, 260nm (¢ 18,700); IR (cm™') 3,050, 2,965, 1,750, 1,670,
1,600, 1,500, 1,400, 1,350, 1,200, 1,160, 1,090, 925, 865, 790; 'H NMR
(DMSO-d,) & 7.66 (4H, d, J=8.2Hz), 7.50 (4H, d, J=8.0 Hz), 7.06 (4H,
d, J=82Hz), 7.03 (4H, d, J=8.0Hz), 4.55 (2H, ¢, J=9.0 Hz), 3.89 (2H,
t, J=9.0Hz), 2.6~2.4 (8H, m), L7~15 (8H, m), 1.0~09 (I2H, m);
»C NMR (DMSO-4,) & 197.1, 1715, 171.0, 154.3, 149.5, 1379, 132.8,
130.1, 128.8, 121.8, 121.7, 51.8, 35.19, 17.74, 17.61, 13.20; MS (70eV) m/e
(%) 760 (M*, 35), 742 (35), 569 (45), 554 (45), 381 (35), 310 (100), 240 (95),
191 (20), 70 (35); Anmal. Calcd for C,,H,,0,,: C, 72.61, H, 6.36. Found:
C, 72.28, H, 6.30.

(15) Syn H-T photodimer of 4, 4'-diisobutyroxychalcone (IV,)

The product, resulted from 4,4’-diisobutyroxychalcone upon irriadia-
tion with UV light for 2 days was recrvstalized in benzene—n-hexane
(I:1) to get while crystal IV,: mp. 255~257°C: UV Amez 258.6 nm
(e 19,300); IR (em™) 3,050, 2,937, 1,757, 1,664, 1,597, 1,501, 1,466, 1,409,
1,383, 1,302, 1,258, 1,235, 1,201, 1,168, 1,122, 1,104, 1,043, 1,015, 986, 916,
870, 809; 'H NMR (DMSO-d,) § 7.85 (4H, d, J=8.7Hz), 7.31 (4H, d,
J=8.6 Hz), 7.13 (4H, d, J=8.7Hz), 6.84 (4H, d, J=8.6 Hz), 5.0~4.8 (4H,
m), 2.78 (2H, hept, J=6.9 Hz), 2.71 (2H, hept, J=6.9 Hz), 1.21 (12H, d,
J=6.9 Hz), 1.16 (12H, d, J=6.9 Hz); **C NMR (DMSO-d,) § 197.3, 174.6,
174.3, 154.0, 149.2, 136.4, 133.7, 129.7, 129.0, 121.6, 120.9, 52.0, 42,4, 28.9,
8.82; MS (70eV) m/e (%) 760 (M*, 5), 569 (10), 380 (65), 310 (100), 240
(43), 70 (48); Amal. Caled for C,H,0,,: C, 7261, H, 6.36. Found: C,
72.80, H, 6.44.
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ABSTRACT

Three new series of charged thermotropic mesogens, frans-
4-(p’-alkoxystyryl)-1-methylpyridinium iodide [(C,H.s+,OC,H,CH=
CHC,H,NCH,)*I"] (abbreviated as PSOC,), rrans-4-(p’-alkoxystyryl)-
1,3-dimethylpyridinium iodide (abbreviated as LSOC,), and ifrans-
4-(p’-alkoxystyryl)-3-ethyl-1-methylpyridinium iodide (abbreviated as
CSOC,), are synthesized for all homologues between methoxy (n=1)
and tetradecanoxy (n=14) and those of n=16, 18. Excellent vields
are usually obtained.

1. INTRODUCTION

Liquid crystalline (mesogenic) compounds are well known to be
differentitated into thermotropic, which change phases on heating, and
Iyotropic, which usually contain charged molecules and undergo phase
changes on addition of solvents. Unfortunately, charged thermotropic
liquid crystalline compounds are rarely studied up to now?. Introduction
of charges into thermotropic liquid crystals may be potentially desired
because certain properties such as colour, paramagnetism and electrical
conductivity may be conveniently generated in these charged molecules.
Molecular properties such as polarizability or hyperpolarizability can
also be enhanced by the introduction of charges into thermotropic liquid
crystals, and this could result in enhanced refractive indices and large
non-linear optical coefficients®.
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In this paper we wish to report the synthesis of three new series of
charged mesogens: trans-4-(p'-alkoxystyryl)-1-methylpyridinium iodides
of general formula [(C,H,,,,OC,H,CH=CHC,H,NCH,)*I-] (abbreviated
to PSOC,, where » denotes the number of carbon atoms in the
terminal alkyl chain), trans-4-(p’-alkoxystyryl)-1,3-dimethylpyridinium
iodide (abbreviated as L.SOC,) and trans-4-( p’-alkoxystyryl)-3-ethyl-1-
methylpyridinium iodide (abbreviated as CSOC,).

2. RESULTS AND DISCUSSION

Preparation of trans-4-(p’-alkoxystyryl)-1-methylpyridinium iodides
and its 3-methyl and 3-ethyl analogues were done by condensation
reactions between various 4-alkoxybenzaldehydes with pyridine methiodide
using piperidine as the catalyst in which pyridine methiodide can be
prepared by reacting pyridine with methyl iodide under methanol reflux
(Scheme 1). This tvpe of reactions can be. proceeded in an one-pot
and mild conditions®. Yields of these reactions were found to be
excellent (83~96%, see Tables 1~3). Trans isomers were found to be

CH, H
O +  CHI reflux lhr O
CHiI
Cn
1. CHOH

O

NG
CHiI®

2. Cno—@cm (85~96%)
. ()
N

Scheme 1
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Table 1. Physical properties of 4-(p’-alkoxystyryl)-1-methylpyridinium

iodide

Compound | Yield 'H NMR IR Mass

PSOC, 92 3.80 (s, 3H), 4.22 (s, 3H), 7.36 (4, | 1,605, | 226 (100),
IH, J=16Hz), 7.71 (d, 2H, J=8.7 | 1,186 | 353 (5)
Hz), 7.79 (d, 1H, J=16Hz), 8.15
(d, 2H, J=6.7Hz), 8.79 (d, 2H,

J=6.7Hz)

PSOC, 87 1.31 (¢, 3H, J= 6Hz), 4.06 (g, 2H, | 1,608, | 240 (100),
J=6.1Hz), 4.22 (s, 3H), 7.01 (4, | 1,188 | 367 (4)
2H, J=8. 4Hz) 7.35 (d 1H, J=16
Hz), 7.69 (d, ZH J=38. 4Hz), 7.97
(d 1H, J= 16Hz), 8.16 (d, 2H, J=

3Hz), 8.80 (4, 2H, J=6. 3Hz)

PSOC, 86 0.96 (t, 3H, J=6Hz), 1.72 (m, 2H), | 1,591, | 254 (100),
3.97 (r, 2H J=T7Hz), 4.22 (s, 3[—[), 1,175 | 381 (1)
702(d 2H J=9Hz), 7.35 (d,

J=16 Hz), 7.69 (d, 2H, J= 9Hz),
7.96 d, lH J——I6Hz) g. 15(d, 2H,
J=6Hz), 8.90 (d, 2H, J=6Hz)

PSOC, 86 0.91 (¢, 3H, J=6Hz), 1.41 (m, 2H), | 1,598, | 268 (100),
1.68 (m, 2H) 4.01 (t, 2H, J=7Hz), | 2,970, | 395 (2)
4.22 (s, 3H), 7.02 (d, 2H, J=9Hz), | 1,181
7.35 (d, 1H, J=16Hz), 7. 68 (d, 2H,

J=9Hz), 7.96 (d, 1H, J= 16Hz),
8.20 (d, 2H, J=6Hz), 890(d 2H,
J=6Hz)

PSOC;, 90 0.87 (¢, 3H, J=6Hz), 3.39 (m, 2H), | 2,980, | 282 (100),
1.70 (m, ZH), 4.00 (r 2H, J=6Hz), | 1,604, | 409 (2)
4.22 (s, 3H), 7.0l (d, 2H, J=9Hz), | 1,185
7.35 (d, 1H, J=16 Hz), 768(d 2H,

J=9Hz), 7.96 (d, 1H, J—IGHZ)
8.16 (d, 2H, J=6Hz), 8.90 (d, 2H,
J=6 Hz)

PSOC, 88 0.86 (4, 2H, J=6Hz), 1.30 m, 3H), | 2,960, | 296 (100),
1.37 (m, 2H) 1.70 (p, 2H, J= 6Hz), 1,594, | 423 (2)
4.0l (d, 2H, J=6Hz), 4.22 (s, 3H), | 1,173
7.03 (d, 2H, J=9Hz), 7.35 (d, IH,

J=16 Hz), 7.68 (d, 2H, J= 9Hz),
7.96 (d, 1H, JH16HZ) 8. 14 (d, 2H,
J=6Hz), 8.80 (d, 2H, J=6Hz)

PSOC, 83.9 | 0.84 (¢, 3H, J=6Hz), 1.29 (m, 8H) 2,944, | 310 (100),
1.67 (p, 2H J=6Hz), 4.00 (t 1,594, | 437 (2)
J=7Hz), 4. ) (s, 2H), 7.0! (d, 2H 1,172
J=9Hz), 7.35 (d, 1H, J=16Hz),

8.16 (4, 2H, J=6Hz), 8.80 (d, 2H,
J=6Hz)

PSOC, 85.2 | 0.84 (¢, 2H), 1.30 (m, 10H), 1.70 (p, | 2,942, | 324 (100),
2H, J=6Hz), 4.00 (¢, 2H, J=6Hz), | 1,593, | 451 (1)
4.22 (s, 3H), 7.02 (d, 2H, J=9Hz), | 1,174

7.35 (d, 1H, J=16 Hz), 7. 68 (d, 2H,
=9Hz) 7.96 (d, lH J=16Hz),
8.15 (d, 2H, J= 6Hz} 8 80 (d, 2H,
=6Hz)
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Table 1. Physical properties of 4-(p’-alkoxystyryl)-1-methylpyridinium
iodide (Continued)

ccmpound\ Yield '‘H NMR IR Mass
PSOC, 83.5 | 0.88 (¢, 3H, J=6Hz), 1.35 (m, 12H), | 2,955, | 338 (100,
1.81 (p, 2H, J=6Hz), 3.98 (r, 2H, | 1,594, | 465 (7)
J=6Hz), 4.48 (s, 3H), 6.91 (d, 2H, | 1,170
J=9Hz), 7.00 (d, 1H, J=15.6 Hz),
7.59 (4, 2H, J=9Hz), 7.65 (d, 1H,
J=15.6Hz), 7.96 (s, 2H), 8.93 (s,
2H)
PSOC,, | 82.7 | 0.87(+, 3H, J=6Hz), 1.27 (m, 14H), | 1,939, | 352 (100),
1.79 (p, 2H, J=6Hz), 3.98 (1, 2H. | 1,597, | 479 (6)

J=6Hz), 4.48 (s, 3H), 6.91 (d, 2H, | 1,177
J=9Hz), 7.00 (d, 1H, J=15.6Hz),
7.58 (d, 2H, J=9Hz), 7.65 (d, 1H,
J=15.6 Hz), 7.96 (d, 2H, J=6 Hz),
8.97 (s, 2H)

PSOC,, 8.4 | 0.87 (t, 3H, J=6Hz), 1.26 (m, 14H), | 2,939, | 366 (100),

1.45 (m, 2H), 3.98 (t, 3H, J=6Hz), | 1,592, | 493 (1)
4.52 (s, 3H), 6.91 (d, 2H, J=9Hz), | 1,172
6.99 (d, 1H, J=15.6Hz), 7.58 (d,
2H, J=9Hz), 7.65(d, 1H, J=15.6
Hz), 7.94 (d, 2H, J=6Hz), 9.00
(d, 2H, J=6 Hz)

PSOC,, 87.1 | 0.87 (r, 3H, J=6 Hz), 1.26 (m, 14H), | 2,954, | 380 (100),
1.45 (m, 2H), 1.81 (m, 2H), 3.98 (t, | 1,595, | 507 (2)
2H, J=7Hz), 4.51 (s, 3H), 6.92 (d, | 1,171
2H, J=9Hz), 6.98 (d, 1H, J=15.6
Hz), 7.57 (d, 2H, J=9Hz), 7.66 (d,
1H, J=15.6 Hz), 7.94 (d, 2H, J=6
Hz), 8.97 (d, 2H, J=6Hz)

PSOC; 89.4 | 0.87 (r, 3H, J=6Hz), 1.26 (m, 16H), | 2,936, | 394 (100),
1.45 (m, 2H), 1.80 (p, 2H, J=6Hz), | 1,595, | 521 (1)
4.00 (¢+, 2H, J=6 Hz), 4.56 (s, 3H), | 1,171
6.95 (overlap, 3H), 7.57 (d, 2H, J=
9Hz), 7.68 (d, IH, J=15.6 Hz), 7.92
(d, 2H, J=6Hz), 9.05 (s, 2H)

PSOC,, 92.8 | 0.87 (¢, 3H, J=6 Hz), 1.26 (m, 20H), | 2,936, | 408 (100),
1.45 (m, 2H), 1.79 (p, 2H, J=6Hz), | 1,595, | 535 (1)
3.99 (¢, 2H, J=6 Hz), 4.55 (s, 3H), | 1,172
6.94 (overlap, 3H), 7.57 (d, 2H, J=

6 Hz), 7.63 (d, 1H, J=15.6 Hz), 7.92
| d, 2H, J=6Hz), 9.05 (s, 2H)

PSOC,, 91.3 | 0.87 (¢, 3H, J=6Hz), 1.26 (m, 24H), | 2,960, | 436 (100),
1.45 (m, 2H), 1.80 (p, 2H, J=6Hz), | 1,594, | 563 (1)
4.00 (¢, 2H, J=6Hz), 4.57 (s, 3H), | 1,173
6.95 (overlap, 3H), 7.57 (d, 2H, J=
9 Hz), 7.63(d, 1H, J=15.6 Hz), 7.90
(d, 2H, J=6 Hz), 9.07 (s, 2H)

PSOC,, 91.6 | 0.87 (¢, 3H, J=6 Hz), 1.26 (m, 28H), | 2,932, | 464 (100),
1.46 (m, 2H), 1.80 (p, 2H, J=6Hz), | 1.592, | 591 (2)
4.00 (r, 2H, J=6Hz), 4.58 (s, 3H), | 1,172
6.93 (4, 2H, J=9Hz), 6.97 (d, 2H,
J=15.6 Hz), 7.90 (d, 2H, J=6 Hz),
9.11 (s, 2H)
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Table 2. Physical properties of 3-methyl-4-(p’-alkoxystyryl)-

1-methylpyridinium iodide

Compound | Yield 'H NMR IR Mass
LSOC, 83.5 | 2.52 (s, 3H), 3.82 (s, 3H), 4.20 (s, | 3,025, | 240 (100),
3H), 7.04 (d, 2H, J=9Hz), 7.32(d, | 1,643, | 367 (1)
1H, J=16Hz), 7.78 (d, 2H, J=8.8 | 1,598
Hz), 7.89 (d, 1H, J=16 Hz), 8.32
(d, 1H, J=7Hz), 8.68 (d, 1H, J=
7Hz), 8.76 (s, 1H)
LSOC, 92.0 | 1.34 (¢, 3H, J=7Hz), 2.50 (s, 3H), | 3,025, | 254 (100),
4.09 (g, 2H, J=7Hz), 4.19 (s, 3H), | 1,638, | 381 (1)
7.02 (d, 2H, J=9Hz), 7.31 (d, 1H, | 1,598
J=6H2), 7.77 (d, 2H, J=8.8Hz),
7.90 (d, 1H, J=16 Hz), 8.32(d, 1H,
J=7Hz), 8 68 (d, IH, J=7Hz),
8.75 (s,.1H
LSOC, 87.1 0.97 (¢, 3H, J=7Hz), 2.31 (m, 2H), | 3,023, | 268 (100),
2.50 (s, 3H), 3.98 (¢, 2H, J=7Hz), | 1,642, | 395 (1)
4.19 (s, 3H), 7.02 (d, 2H, J=9Hz), | 1,601
7.31 (4, 1H, J=16 Hz), 7.77 (d, 2H,
J=8.8Hz), 7.90 (d, 1H, J=16 Hz),
8.33 (d, 1H, J=7Hz), 8.68 (d, 1H,
J=7Hz), 8.76 (s, 1H)
LSOC, 83.6 | 0.93 (¢, 3H, J=7Hz), 1.44 (m, 2H), | 2,950, | 282 (100),
1.70 (m, 2H), 2.50 (s, 3H), 4.03 2H, | 1.642, | 409 (1)
J=7Hz), 4.19 (s, 3H), 7.02 (d, 2H, | 161
J=9Hz), 7.31 (4, 1H, J=16Hz),
7.77 (d, 2H, J=8.8 Hz), 7.90 (d, 1H,
J=16Hz), 8.32 (d, 1H, J=7Hz),
8.68 (d, 1H, J=7Hz), 8.75 (s, 1H)
LSOC, 26.0 | 0.88 (¢, 3H, J=7Hz), 1.35 (m, 4H), | 2,950, | 296 (100),
1.71 (m, 2H), 2.50 (s, 3H), 4.0l (¢, | 1,640, | 423 (1)
2H, J=7 Hz), 4.19 (s, 3H), 7.02 (d, | 1,593
2H, J=9 Hz), 7.31 (d, 1H, J=16 Hz),
7.77(d, 2H, J=8.8 Hz), 7.90(d, 1H,
J=16Hz), 8.33 (d, 1H, J=7Hz),
8.68 (d, 1H, J=7Hz), 8.76 (s, 1H)
L.SOC, 83.7 | 0.87 (¢, 3H, J=7Hz), 1.30 (m, 6H), | 2,964, | 310 (100),
1.70 (m, 2H), 2.51 (s, 3H), 4.02 (¢, | 1,641, | 437 (1)
2H, J=7Hz), 4.19 (s, 3H), 7.02 (d, | 1,599
2H, J=9Hz), 7.31 (d, 1H, J=16 Hz),
7.77(d, 2H, J=8.8Hz), 7.89 (d, 1H,
J=16Hz), 8.32 (d, 1H, J=T7Hz),
8.68 (d, 1H, J=7Hz), 8.75 (s, 1H)
LSOC, 83.2 | 0.86 (¢, 3H, J=7Hz), 1.33 (m, 8H), | 2,935, | 324 (100),
1.70 (m, 2H), 2.51 (s, 3H), 4.02 (1, | | ‘644, | 451 (1)
2H, J=7Hz), 4.19 (s, 3H), 7.02 (d, | 1.601
2H, J—9Hz}, 7.31(d, 1H, J=16 Hz),
7.77(d, 2H, J=8.8 Hz), 7.89 (d, 1H,
J=16 Hz), 832 (d, 1H, J=THz),
8.68 (d, 1H, J=7Hz), 8.75 (s, 1H)
LSOC, 83.3 | 0.86 (¢, 3H, J=7Hz), 1.32 (m, IOH), 2,941, | 338 (100),
1.71 (m, 2H), 2.50 (s, 3H), 4.03 1,642, | 465 (1)
2H, J=7Hz), 4.19 (s, 3H), 7.02 (d 1,601

2H, .I-9Hz), 7.31 (d, 1H, J=16 Hz),
7.77(d, 2H, J=8.8 Hz), 7.89 (d, 1H,
J=16 Hz), 8.32 (d, iH, J=THz),
8.68 (4, IH, J=7Hz), 8.75 (s, 1H)
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Table 2. Physical properties of 3-methyl-4-(p’-alkoxystyryl)-

I-methylpyridinium iodide (Continued)

Compound‘ Yield ‘

'H NMR

R |

Mass

LSOC,

LSOC,,

LSOC,,

LSOC,,

LSOC,;

LSOC,,

LSOC,,

LSOC,,

83.41

85.8

88.8

96.2

88.9

85.2 | 0.84 (+, 3H, J=6 Hz), 1.24 (m, 12H),

1.71 (m, 2H), 2.51 (s, 3H), 4.01 (¢,

| 2H, J=7Hz), 4.19 (s, 3H), 7.02 (d,

2H, J=9Hz), 7.31 (d, 1H, J=16 Hz),
7.77(d, 2H, J=8.8 Hz), 7.89 (d, 1H,
J=16Hz), 8.31 (d, 1H, J=7Hz),
8.68 (d, 1H, J=7Hz), 8.75 (s, 1H)
0.84 (z, 3H, J=6 Hz), 1.24 (m, 14H),
1.71 (m, 2H), 2.51 (s, 3H), 4.01 (¢,
2H, J=7Hz), 4.19 (s, 3H), 7.02 (d,
2H, J=9 Hz), 7.31 (d, 1H, J=16 Hz),
7.77(d, 2H, J=8.8 Hz), 7.89 (d, 1H,
J=16Hz), 8.31 (d, 1H, J=7Hz),
8.68 (d, 1H, J=7Hz), 8.75 (s, IH)

; 0.83 (t, 3H, J=6Hz), 1.22 (m, 16H),

1.73 (m, 2H), 2.51 (s, 3H), 3.92 (1.
2H, J=THz), 4.41 (5, 3H), 6.86 (4.
2H, J=9 Hz), 6.97 (d, IH, J=16 Hz).
7.56 (d, 2H, J=8.8 Hz), 7.62 (d, 1H.
J=16Hz), 8.15 (d, 1H, J=7Hz),
8.79 (d, IH, J=7Hz), 8.92 (s, 1H)

0.85(¢, 3H, J=6Hz), 1.34 (m, 18H),
1.75 (m, 2H), 2.54 (s, 3H), 3.95 (t,
2H, J=T7Hz), 4.45 (s, 3H), 6.89 (d,
2H, J=9Hz), 7.00 (d, 1H, J=16 Hz),
7.58 (d, 2H, J=8.8 Hz), 7.63 (d, 1H,
J=16Hz), 8.16 (d, 1H, J=7Hz),
8.82 (d, IH, J=7Hz), 8.98 (s, IH)

0.85 (, 3H, J=6 Hz), 1.24 (m, 20H),
1.75 (m, 2H), 2.54 (s, 3H), 3.95 (r,
2H, J=7Hz), 4.45 (s, 3H), 6.89 (d.
2H, J=9 Hz), 7.00 (d, |H, J=16 Hz),
7.58(d, 2H, J=8.8 Hz), 7.64 (d, 1H.
J=16Hz), 8.16 (d, 1H, J=7Hz)
8.83 (d, IH, J=7Hz), 8.96 (s, 1H)

0.87 (¢, 3H, J=6Hz), 1.34 (m, 22H),
1.77 (m, 2H), 2.57 (s, 3H), 3.99 (1,
2H, J=T7Hz), 4.49 (s, 3H), 6.92 (d,
2H, J=9Hz), 7.02 (d, |H, J=16 Hz),
7.5% (d, 2H, J=8.8 Hz), 7.63 (d, 1H,
J=16Hz), 8.14 (d, 1H, J=7Hz),
8.86 (4, IH, J=7Hz), 8.97 (s, 1H)

0.87 (¢+, 3H, J=6 Hz), 1.28 (m, 26H),
1.77 (m, 2H), 2.59 (s, 3H), 4.00 (r,
2H, J=T7Hz), 4.50 (s, 3H), 6.93 (d,
2H, J=9 Hz), 7.04 (d, I1H, J=16 Hz),
7.57 (d, 2H, J=8.8 Hz), 7.62 (d, 1H,
J=16Hz), 8.12 (d, 1H, J=7Hz),
8.86 (d, 1H, J=7Hz), 8.93 (s, 1H)
0.87 (¢, 3H, J=6 Hz), 1.29 (m, 30H),
1.79 (m, 2H), 2.59 (s, 3H), 4.01 (r,
2H, J=T7Hz), 4.50 (s, 3H), 6.94 (d,
2H, J=9Hz), 7.04 (d, 1H, J=16 Hz),
7.57(d, 2H, J=8.8Hz), 7.62 (d, lH,
J=16Hz), 8.12 (d, 1H, J=7Hz),
8.82 (d, 1H, J=7Hz), 8.92 (s, 1H)

2,923,
1,643,
1,600

2,922,
1,642,
1,957

2,921,
1,642,
1,599

2,923,
1,638,
1,599

2,921,
1,637,
1,598

2,921,
1,641,
1,512

2,921,
1,657,
1,597

352 (100),
479 (1)

366 (100),
493 (1)

380 (100),
507 (1)

394 (100D,
521 (1)

408 (100),
535 (2)

422 (100),
549 (2)

450 (100),
Y Cl3

478 (100),

605 (1)
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Table 3. Physical properties of 3-ethyl-4-(p'-alkoxystyryl)-
1-methylpyridinium iodide

Compound‘ Yield 'H NMR | Mass

CSOC, 96 1.22 (+, 3H, J=T7Hz), 2.97 (g, 2H, J=T7 | 254 (100),
Hz), 3.81 (s, 3H), 4.22 (s, 3H), 7.03 (d, | 381 (0.4)
2H, J=9Hz), 7.35 (d, IH, J=I16Hz), 7.78
(d, 2H, J=8.8Hz), 7.90 (d, 1H, J=16 Hz), ‘

8.35 (d, 1H, J=7Hz), 8.69 (d, 1H, J=7
Hz), 8.74 (s, 1H)

CSOC, 95 | 1.22 (t, 3H, J=THz), 1.32 (t, 3H, J=7Hz), | 268 (100),
2.93 (g, 2H, J=THz), 4.07 (g, 2H, J=THz), | 395 (0.4)
4.22 (s, 3H), 7.00 (d, 2H, J=9Hz), 7.33 (d,
IH, J=16 Hz), 7.77(d, 2H, J=8.8 Hz), 7.90
d, IH, J=16Hz), 8.35 d, IH, J=THz), |
8.69 (d, I1H, J=7Hz), 8.74 (s, 1H)

0.97 (¢t, 34, J=7Hz), 1.22 (t, 3H, J=7Hz), | 282 (100),
1.73 (m, 2H), 2.96 (g, 2H, J=7Hz), 3.98 (g, | 409 (0.4)
2H, J=7Hz), 4.21 (s, 3H), 7.01 (4, 2H, J= |

9Hz), 7.35 (d, 1H, J=I16Hz), 7.78 (d, 2H,
J=8.8Hz), 7.89 (4, 1H, J=16 Hz), 8.33 (d,
%H, JTTHZ), 8.69 (d, 1H, J=7Hz), 8.72
s, 1H

0.92 (¢, 3H, J=T7Hz), 1.22 (¢, 3H, J=7Hz), | 296 (100),
1.41 (m, 2H), 1.70 (m, 2H), 2.96 (g, 2H, J= | 423 (0.4)
7Hz), 4.02 (g, 2H, J=7Hz), 4.22 (s, 3H),
7.01 (d, 2H, J=9Hz), 7.34 (d, IH, J=16
Hz), 7.77 (d, 2H, J=8.8Hz), 7.90 (d, IH, |
| J=16Hz), 8.34 (d, |H, J=THz), 8.69 (d, |
IH, J=7Hz), 8.73 (s, 1H)

CsocC, 90.2 | 0.89 (¢, 3H, J=7Hz), 1.22 (t, 3H, J=7Hz), | 310 (100},
1.35 (m, 4H), 1.72 (m, 2H), 2.95 (g, 2H, J= | 437 (0.4)
7Hz), 4.02 (g, 2H, J=7Hz), 4.22 (s, 3H),

7.01 (d, 2H, J=9Hz), 7.34 (d, |H, J=i6 |

Hz), 7.77 (d, 2H, J=8.8Hz), 7.90 (4, 1H, |
J=16Hz), 8.34 (d, 1H, J=7Hz), 8.69 (d,

1H, /=7 Hz), 8.73 (s, 1H)

CSOC, 87.8 | 0.89 (¢, 3H, J=7Hz), 1.22 (¢, 3H, J=THz), | 324 (100),
1.32 (m, 6H), 1.72 (m, 2H), 2.95 (g, 2H, | 451 (0.5)
J=THz), 4.02 (g, 2H, J=7 Hz), 4.21 (s, 3H),

1 7.01 (d, 2H, J=9Hz), 7.34 (d, IH, J=16
| Hz), 7.77 (d, 2H, J=8.8 Hzf, 7.89 (d, 1H,
! | J=16Hz), 8.33 (d, 1H, J=7Hz), 8.86 (d,
| | 1H, J=THz), 8.72 (s, 1H)

CS0C, . 88.9 0.85 (f, 3H, J=7Hz), 1.22 (¢, 3H, J=7Hz), ‘ 338 (100),
1.31 (m, 8H), 1.71 (m, 2H), 2.95 (¢, 2H, J= | 465 (0.5)
7Hz), 4.02 (g, 2H, J=7Hz), 4.21 (s, 3H), |

7.01 (d, 2H, J=9Hz), 7.34 (d, 1H, J=16

Hz) 7.77 (d, 2H, J=$.8Hz), 7.89 (4, 1H, |

J=16 Hz), 8.33 (d, 1H, J=7Hz), 8.6%9 (d,

1H, J=T7Hz), 8.72 (s, 1H)

CSOC, | 86.4 | 0.85 (t, 3H, J=7Hz), 1.22 (¢, 3H, J=THz), | 352 (100),
| | 131 (m, 10H), 1.71 (m, 2H), 2.95 (g, 2H, | 479 (0.5)

| J=7Hz), 4.02 (g, 2H, J=7Hz), 4.21 (s, 3H),

7.01 (d, 2H, J=9Hz), 7.34 (d, 1H, J=16 |

Hz), 7.77 (d, 2H, J=8.8Hz), 7.89 (d, 1H,

J=16Hz), 8.33 (d, 1H, J=7Hz), 8.69 (d,

1H, J=71Hz), 8.72 (s, 1H)

CS0C, 89

CS0C, 85.8

[
‘
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I-methylpyridinium iodide (Continued)

Physical properties of 3-ethyl-4-(p’-alkoxystyryl)-

'H NMR

Mass

140
Table 3.
Compound | Yield
CsoC, | 85.7
CS0C,, 84.6
CS0C,, 86.1
CSOC,, 87.5
CSOC,, 88.8
CSOC,, 95.7
CSOC,, 94.8
CSOC,, 90.3

0.84 (¢, 3H, J=7Hz), 1.23 (m, 15H), 1.70
(m, 2H), 2.95 (¢, 2H, J=7 Hz), 4.00 (q, 2H,
J=7Hz), 4.22 (s, 3H), 7.01 (d, 2H, J=9
Hz), 7.34 (d, 1H, J=16Hz), 7.77 (d, 2H,
J=8.8Hz), 7.87 (d, 1H, J=16Hz), 8.34 (d,
1H, J=7Hz), 8.69 (d, 1H, J=7Hz), 8.73
(s, 1H)

0.84 (¢, 3H, J=7THz), 1.22 (m, 17TH), 1.70
(m, 2H), 2.95 (q, 2H, J=7 Hz), 4.00 (g, 2H,
J=7Hz), 4.22 (s, 3H), 7.0l (d, 2H, J=9
Hz), 7.35 (d, 1H, J=16Hz), 7.77 (d, 2H,
J=8.8Hz), 7.87 (d, 1H, J=16Hz), 8.34 (d,
1H, J=7Hz), 8.69 (d, IH, J=7Hz), 8.73
(s, 1H)

0.84 (r, 3H, J=7Hz), 1.22 (m, 19H), 1.71
(m, 2H), 2.95 (g, 2H, J=7 Hz), 4.02 (g, 2H,
J=7Hz), 4.21 (s, 3H), 7.01 (d, 2H, J=9
Hz), 7.35 (d, 1H, J=16Hz), 7.77 (d, 2H,
J=8.8Hz), 7.87 (d, 1H, J=16 Hz), 8.33 (d,
1H, J=7Hz), 8.68 (d, IH, J=7Hz), 8.72
(s, 1H)

0.84 (r, 3H, J=THz), 1.22 (m, 21H), 1.71
(m, 2H), 2.95 (g, 2H, J=7Hz), 4.02 (g, 2H,
J=THz), 4.21 (s, 3H), 7.01 (d, 2H, J=9
Hz), 7.35 (d, 1H, J=16Hz), 7.77 (d, 2H,
J=8.8Hz), 7.89 (d, 1H, J=16 Hz), 8.33 (d,
1H, J=7Hz), 8.69 (4, |H, J=7Hz), 8.72
(s, 1H)

0.83 (¢, 3H, J=7Hz), 1.22 (m, 23H), 1.71
(m, 2H), 2.95 (g, 2H, J=7Hz), 4.00 (g, 2H,
J=THz), 4.21 (s, 3H), 7.0l (d, 2H, J=9
Hz), 7.35 (d, 1H, J=16Hz), 7.77 (d, 2H,
J=8.8Hz), 7.89 (d, 1H, J=16 Hz), 8.34 (d,
1H, J=7Hz), 8.69 (d, I1H, J=7Hz), 8.72
(s, 1H)

0.83 (s, 3H, J=7Hz), 1.22 (m, 25H), 1.71
(m, 2H), 2.95 (¢, 2H, J=7Hz), 4.01 (g, 2H,
J=THz), 4.21 (s, 3H), 7.01 (4, 2H, J=9
Hz), 7.35 (d, 1H, J=16Hz), 7.77 (d, 2H,
J=8.8Hz), 7.89 (¢, IH, J=16Hz), 8.34 (d,
1H, J=7Hz), 8.69 (d, 1H, J=7Hz), 8.72
(s, 1H)

0.87 (¢, 3H, J=7Hz), 1.25 (m, 29H), 1.76
(m, 2H), 2.95 (g, 2H, J=7Hz), 3.98 (g, 2H,
J=THz), 4.53 (s, 3H), 6.92 (d, 2H, J=9
Hz), 7.06 (d, 1H, J=16Hz), 7.57 (d, 2H,
J=8.8Hz), 7.63 (d, 1H, J=16 Hz), 8.17 (d,
1H, J=THz), 8.88 (d, 1H, J=7Hz), 8.91
(s, 1H)

0.87 (r, 3H, J=7Hz), 1.25 (m, 33H), 1.76
(m, 2H), 2.95 (g, 2H, J=7Hz), 3.99 (g, 2H,
J=7Hz), 4.53 (s, 3H), 6.93 (d, 2H, J=9
Hz), 7.05 (d, 1H, J=16Hz), 7.57 (d, 2H,
J=8.8Hz), 7.63 (4, 1H, J=16Hz), 8.15 (d,
1H, J=7Hz), 8.85 (4, 1H, J=7Hz), 8.9l
(s, 1H)

366 (100),
493 (0.5)

380 (100),
507 €0.5)

394 (100),
521 (0.3)

408 (100),
535 (0.3)

422 (100",
549 (0.3)

436 (100),
563 (0.3)

464 (100),
591 (0.2)

492 (100),
619 (0.3)
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only products in all of our reactions which could be easily identified
by 'H NMR. However, prevention of light exposure to these products
is mandatory in all preparation and purification processes. Otherwise,
cis-isomers are usually encountered. Since these charged liquid crystalline
materials are mesogenic in nature, melting points of these materials are
not easily identified. Preliminary thermal scanning on one of these
compounds showed that several phase region were observed (see Fig. 1).
Detailed thermal properties analysis and mesophases identification will
be discussed in a paper elsewhere.

60.0

unidentified

59.0 s
mesophase regions

58.0 4

Peak 107 73 °C \
z
57.0 4 HY 40,75 /g ME 2,722 J/y

Peak 269,745 °C

i 56.0 [ solid phase regions |
z
2 s5.0 / \
-
&
¥ 54.0

53.0 1 Peak 97.13 °C

AH 11.74 J/g

52.0 1

51.0

50.0 4/

lg.ﬂ'wl—é-- o - p—— e T Rl B B

i | | ) I
75.0 125.0 175.0 225.0 275.0

Fig. 1. Differential therml scanning calorimetry of trans-4-(p’-octyloxtstyryl)-
1-methylpyridinium iodides (PSOC,).

Higher alkane numbers of 4-alkoxybenzaldehydes are not commercially
available and have to be prepared in lab. Preparation of these
4-alkoxybenzadehydes can be done by reacting 4-formyl-phenol with
various alkyl bromides under basic conditions (Scheme 2). Since excess
residue of alkyl bromides were found to be reacted with piperidine in
the next step, isolation of these 4-alkoxybenzadehydes were found to be
required. Yields of them were only fair (50%). Precise stoichiometric
equivalent of bases were found to be required to get higher yields of
products. Side reactions such as nucleophilic attack by hydroxide to
form alcohols and nucleophilic attacks by alkoxides to form ethers
would occur when excess bases were used (Scheme 3).
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CH;0H Qe
cno@oa + NaOH > cm—@-owa

reflux to homogeneous

Cn-Br
NaBr + CHO‘@OCn
(~30%)

Scheme 2

Side Reactions :
B ) SN2
1. R—CH,-Br + NaOH — = R-CH,-OH +  Napr
(excess)

[CH<)
2. R—-CH,-OH + NaOH —> R—CH,-ONa + H.0
(excess) -

R—CH,-ONa SN2
H.-ONa + RCH.Br —2"2 R—CH,-OCH,R + NaBr

Scheme 3
3. EXPERIMENTAL

Substituted methoxy to decanoxy aryl aldehydes, 4-picoline, 3,4-
lutidine, and colidine (aldrich) were used as received. Methanol was
dried over calcium chloride. 'H NMR spectra were recorded on a
Bruker AM-300 spectrometer. The MS spectra were obtained by using
a Joel Jms Sx/Sx 102A system at 70eV, infrared spectra were recorded
by Beckman instrument. Differential thermal scanning calorimetry was
done on Perkin-Elmer DSC-7 with a scan rate at 10°C/min under

nirogen atmosphere.
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4., GENERAL PROCEDURE
(1) Synthesis of higher alkane number of 4-alkoxybenzaldehydes

To a round bottom flask were added 4-hydroxybenzaldehyde (10 mmol),
25ml methanol, and sodium hydroxide (12 mmol). The solution was
then heated to reflux until a homogeneous phase was obtained. After
cooling to room temperature, alkyl bromide (12 mmol) was then added
to the flask. Solution was again heated to reflux and left for overnight.
The reaction was worked up by extraction with methylene chloride
and 5% sodium hydroxide aqueous solution. The organic layer was
neutralized by 5% hydrochloric acid aqueous solution and dried over
magnesium sulfate. After rotovap off the solvent, crude yields (~50%)
of 4-alkoxybenzaldehydes were obtained. The 4-alkoxybenzaldehyde was
further purified by running through a liquid chromatograph column
before it was used for next reaction.

(2) Synthesis of PSOC,, LSOC, or CSOC,

To a round bottom flask were added 4-picoline (or 3,4-lutidine
or colidine) (4.48 mmol) and methyl iodide (0.5ml, 8.03 mmol). The
mixture was stirred under 2ml of methanol reflux for one hour. After
cooling to room temperature, another 5ml of methanol was added,
followed by the aryl aldehyde (1.5~2.0eq) and about 1ml of piperidine
(0.5eq). The resulting solution was heated to reflux with stirring for
another three hours. After the solution was cooled to zero degree C,
20~30ml of ethyl ether was then added to precipitate the products.
After filtration under reduced pressure, the crude products of 3-methyl-
4’-substituted-4-styrylpyridine methiodide were isolated. Crude yields
of products were about 83~98%. Recrystallization was done in
CH,OH/CH,CI, (1:3).
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REALIZATION OF NEW MUTUALLY
COUPLED CIRCUIT USING CCIIs

YuNG-CHANG YIN

Department of Electronic Engineering
Fu Jen Catholic University
Taipei, Taiwan 24205, R.0.C.

ABSTRACT

A new method for realizing mutually coupled circuits using
current conveyors (CCIIs) as active elements is proposed. The
realized circuits are composed of very few CClls, resistors and
grounded capacitors. On the other hand, the values of a primary
reciprocal self-inductance, a secondary reciprocal self-inductance
and a mutual reciprocal inductance can be tuned by resistors or
capacitors. The circuits include only grounded capacitors which
are suitable for integrated circuit implementation.

1. INTRODUCTION

Several methods for realizing mutually coupled circuits using active
clements have been published”~®. Many of them mentioned the tunable
values of self-inductors and mutually inductor used eight Operational
Transconductance Amplifiers (OTAs) or current conveyors (CClls).
However, there is no circuit which can be tuned the values of a primary
reciprocal self-inductance (I",,), a secondary reciprocal self-inductance
(I',,) and a mutual reciprocal inductance (/7,;). In this paper, we
propose a new method for simulating the mutually coupled using
few current conveyors (CClIs) as active elements. Three reciprocal
inductances (I",,, I',, and I",,) in the circuits can be adjusted to the
desired values by three resistors; meanwhile, employing of grounded
capacitors is suitable for integrated circuit fabrication.

2. CIRCUIT CONFIGURATIONS

A mutually coupled circuit and its equivalent circuit are shown in
Figs. 1(a) and 1(b). The Y-matrix is given by
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Iiz
o & - Tz Iz o o Ilv 2004 Iz <
V.
v, Ih G2 v, % 2 :
L-h ) LG L1z
5 il e
(a) Mutually coupled circuit (b) Equivalent circuit

Fig. 1. Mutually coupled circuit.

| (1)

- rlz F?Z
L[’ L—s . V’J

where I',,=—KvT,I',,, K is a coefficient of coupling. A grounded
inductor is shown in Fig. 2¢”. The reciprocal inductance is given
below:

GG
r=-"2le
sC (2)
X
Z ccll-
i Ga
I
T Y
+ . CCIH+
v S e B
G -
1

Fig. 2. Grounded inductor of Eg. (2).

From the circuit shown in Fig. 3, the following reciprocal inductance
matrix with =0 is obtained:

G40 o
G B
P= (-3
— 130, GIGHE6.)
C ]

where C is capacitance, and G, G,, G, and G, are conductances.
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G,
% L+ N z
z CCI- Y cc-
L Y ol G,
I L
= - Y 0
% z ccl- z . . z CCIL | +
v T l’ v,
c G
I 1

Fig. 3. CCII circuit of Eq. (3).

It is obvious that the values of I',, and I',, can be adjusted
independently by tuning the values of G, and G., respectively. Moreover,
we can simultaneously vary the three reciprocal inductances 'y, 'z
and I',, by adjusting the values of conductor G, G or grounded
capacitor C. If the value of G, is negative, the coefficient of coupling
K is negative. We may use the well-know Generalized Impedance
Converter (GIC) circuit to achieve the object. Figure 4 shows the
circuit with the following reciprocal inductance matrix:

[ _G(G,—Gy) GG,
} C iy
=} (4
' GG, G(G.—G,)
\ C C

By adjusting the two conductors G, and G,, we can independently tune
the reciprocal inductances I',, and I',;. Moreover, by adjusting the
values of conductors G, G,, or capacitor C, we can simualtaneously vary
the values of I',,, I';, and I'},.

It should be noted that the circuits shown in Figs. 3 and 4 include
only grounded capacitors, which are suitable for integrated circuit
implementation.

X oo+ 74— Cl ﬁ )
Y G
+

Fig. 4. CCII circuit of Eq. (4).
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3. EXPERIMENTAL RESULTS

To verify the theoretical prediction, we built the mutually coupled
circuit of Fig. 3 with G=G,=G,=G.=10""* siemens, K=0.5 and C=1 uF
as well as Fig. 4 with G=1m siemens, G,=G.=2m siemens, K=—1
and C=14F. We constructed the coupled tuned circuit shown in Fig. 5
with R,=R.,=1k®, C,=C,=1uxF for Fig. 3 and C,=C,=10uF for
Fig. 4. The operational amplifier (AD 844) was chosen as CCII. The
measured values were found by Hewlett Packard network/spectrum
analyzed 4195A. The measured frequency responses of the coupled
tuned circuit Figs. 3 and 4 are shown in Figs. 6 and 7 in order. They
agree with the theoretical analysis well.

Fig. 5. Coupled tuned circuit,

Gain ( dB )

Ty """ e T 10°

Frequency ( Hz )

Fig. 6. Frequency response of a mutually coupled circuit with K=0.5.
Solid curves: Ideal response, """ Measured response
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=501

Gain ( dB)

Wy e 1@ T
Frequency ( Hz )

Fig. 7. Frequency response of a mutually coupled circuit with K=—1.
Solid curves: Ideal response, *'+”" Measured response

4. CONCLUSION

We have proposed a new method for realizing mutually coupled
circuit using few CCIIs as active elements. Three reciprocal inductances
(I',,, I';; and T",,) in the circuit can be tuned independently by resistors,
and the circuits are suitable for integrated circuit implementation owing
to the use of grounded capacitors.
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The Art of Plot Arrangement in Meng
Cheng-Shun’s Lyrical Drama Chiao Hung Chi

CHIN-KUEI-YU HSIiEH

Department of General Subject in Chinese, History, and Philosophy
Colleges of Science and Engincering, Foreign Languages, Human Ecology,
Fu Jen Catholic University,

Taipei, Taiwan 24205, R.O.C.

ABSTRACT

This paper deals with Meng Cheng-Shun’s Chiao Hung Chi, a lyrical
drama written during the late Ming period. The purpose of the study
is to analyze the arrangement of plots in Chiao Hung Chi in order to
present its theme. The author concludes that this lyrical drama is
an epitome of dramatic conflicts found in former romantic plays.
Furthermore, the thoughts demonstrated in the lyrical drama have
proved to transcend those described in any work of the same kind that
has ever been written before. Therefore, Chiao Hung Chi may be said
to serve as a link between past and future in the history of Chinese

literature.
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ABSTRACTS OF PAPERS BY FACULTY
MEMBERS OF THE COLLEGE OF SCIENCE
AND ENGINEERING THAT APPEARED IN

OTHER REFEREED JOURNALS DURING

THE 1995 ACADEMIC YEAR

The Asymptotic Distribution of the
Process Capability Index C,,.:

Sy-MieN CHEN (R Z#) AND NAI-FEnG Hsu

Communications in Statistics: Theory and Methods,
Volume 24, Issue 5, pp. 1279-1291 (SCI) (1995)

The main result of this paper is that under some regularity
conditions, the distribution of an estimator of the process capability

index C,., is asymptotically normal.

A Stydy on Economic X-Control Charts

BEh HEL
500 B P2 Pt B AR 0 55 493505 B (1995)

AR R ER R RS B R D > BIRIEFMER (assignable
causes) BAEMPHIMILE o ELERHRES » BT ERAEAESEHN S
» HEANTE KRR SRR ; A — BB AR RN~ £
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SRAVEE R N EARR ) o

AP ZPEAETETMRBIRERER R AR GEGT » BUHARR
BT o SR ABRRWE o REHRAH _ZEIFMMARRE  FHRESE
FEFERR RSN — R HARTEEWARER
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Estimation Algebras on Nonlinear Filtering Theory

WEN-LIN CHIOU (% L#)

Proceedings of the International Conference on
Control and Information, pp. 367-370 (1995)

The idea of using estimation algebras to construct finite dimensional
nonlinear filters was first proposed by Brockett and Mitter independently.
It turns out that the concept of estimation algebra plays a crucial role
in the investigation of finite dimensional nonlinear filters. In his talk at
the International Congress of Mathematicians in 1983, Brockett proposed
to classify all finite-dimensional estimation algebras. In this paper we
consider some filtering systems. In a special filtering system: (1) We
have some structure results. (2) For any arbitrary finite dimensional
state space, under the condition that the drift term is a linear vector
field plus a gradient vector field, we classify all finite dimensional
estimation algebras with maximal rank. (3) We classify all finite
dimensional estimation algebras with maximal rank if the dimension of
the state space is less than or equal to three. A more general filtering
system is considered. The above three results can be ‘used’ locally.
Therefore from the algebraic point of view, we have now understood

generically some finite dimensional filters.

Z R s BN 8 &5t

JIUNN-DER YANG AND Luu-GEN HwaA (& &%)
Chinese Journal of Materials Science, 26(4), 319-322 (1994)
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Temperature and Frequency Dependence of
Multiphonon Absorption in Halide Glasses

SIN-YI Ko AND Luu-GEn Hwa (& §4%)
Chinese Journal of Materials Science, 27(1), 67-70 (1995)

The halide glasses based on ZrF, or/and HfF, heavy metals exhibit
high transparency over the frequency range from the near UV to the
mid IR. This makes them the promising infrared transmitting materials.
In order to understand their infrared properties, the temperature and
frequency dependence measurement of multiphonon edge absorption in 2
multicomponent halide glasses were performed. The results show the
IR edge is featureless with weak structure, and the multiphonon
absorption coefficients decrease exponentially with increasing frequency.
The results will be discussed in terms of intrinsic multiphonon absorption
theory.

Studied of the Hydrated Surface Layer on
Heavy-Metal Fluoride Glasses by IR Spectroscopy

Fu-FA Hsao AND Luu-GEN Hwa (& & 4R)

Proceedings of 1995 Conference of the Chinese Society for
Material Sciences, Vol. II, p. 20 (1995)

The Fluoride Glasses based on ZrF, or/and HfF, heavy metal
exhibit high transparency over the frequency range from the near UV
to the mid IR (6-7 #m). This property makes them possible candidate
for a wide variety of application ranging from laser windows to infrared
fiber optics. We studied the attack of liquid water on the surface
layer of two commercial available ZBLAN (ZrF,-BaF.-LaF,-AlF,-NaF)
Heavy-Metal Fluoride Glasses by IR spectroscopy. IR absorption
measurments were performed as a function of time and temperature for
ZBLAN glasses. Two IR peaks were observed at 3,440 and 1,640 cm™'
respectively.

The relationship between the absorbance and immersion time will
be discussed in light of diffusion theory and the develpment of the
absorption peaks is related to a surface layer formation on these glasses.
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The Structural Investigation of Heavy-Metal
Fluoride Glasses by Vibrational Spectroscopy

Pi-LIN WANG AND Luu-GEN Hwa (3 &41)

Proceedings of 1995 Conference of the Chinese Society for
Material Sciences, Vol. II, p. 22 (1995)

The Heavy-Metal Fluoride glasses exhibit high transparency from
the mid-IR to the near UV. The propertv makes them possible
candidate for a wide variety of applications ranging from laser window
to infrared fiber optics. The structural investigations of Heavy-Metal
Fluoride glasses by vibrational spectroscopy (Infrared Reflectivity
Multiphonon edge absorption and Polarized Raman Scattering measure-
ments) were performed. From our study, we are able to understand the
fundamental vibrational characteristics of these glasses and the primary
mechanisms influencing their infrared transparency. The LO-TO vibra-
tional pairs splitting were also observed for these glasses by IR reflection
measurement at different incident angle. The results will be discussed

in light of short and/or intermediate range order.

Aqueous Coprecipitation Synthesis of

Nd, s;Ceq.;5Cu0,_, Superconductors

Y.D. Yao, J.K. Wu, K.T. Wu (4% %),

Y.Y. Cuen, C. TiEN AND D.S. HunG
Physica C, pp. 235-240, 553-354 (1994)

An aqueous coprecipitation synthesis process has been developed to
preparing high quality N-type NdCeCuO superconductors. Due to the
intimate mixture of coprecipitates was treated at the atomic level; with
proper controlling the pH value of the solutions, the superconducting
properties of the final homogeneous fine-grain-size NdCeCuO super-
conductors are much better than that prepared by solid state reaction
technique.



Fu Jen Studies 169

Magnetoresistance Study in Cr-Co Superlattices and Films

Y.D. Yao, Y. Liou, J.C. A. HuanG, S.Y. Liao, C. H. LEE,

K.T. Wu (&3 %), Y. Y. Cuen, C.L. Lu anp W.T. YANG
Chinese J. Phys., 32, 863-869 (1994)

The magnetoresistance (MR) of (Co/Cr),, superlattice with hep-Co
layers and bcc-Cr layers on both MgO and ALO, substrates with Mo as
a buffer layer, and the anisotropy magnetoresistance (AMR) of the
single-crystal kcp-Co, fec-Co, as well as the CoCr alloy thin films have
been studied at 10 and 295K, respectively. The MR of Co/Cr
multilayers has been observed to increase by a factor of 3.8 with
replacing its substract MgO (100) by ALO, (1102) only. The AMR of
Co films has been found to decrease rapidly by the buffer layer as well
as the alloying effect between Co and Cr.

Influence of Crystal Structure on the
Magnetoresistance of Co/Cr Multilayers

Y. Liou, J.C. A. HuaNG, Y.D. Yao, C.H. LEE,
K.T. Wu (&% %), C.L. Ly, S.Y. L1ao, Y. Y. CHEN,

N.T. Liang,W. T. YANG, C. Y. anxDp B.C. Hu
J. Appl. Phys., 76, 6516-6518 (1994)

Epitaxial Co/Cr multilayers, and single-crystal Co thin films etc.
have been grown on MgO and Al,O, substrates with Cr and Mo as
buffer layers by molecular beam epitaxy technique. From the structure
and magnetoresistance studies, we have found that the ferromagnetic
anisotropy of resistance (AMR) is strongly influenced by the buffer layer,
but with negligible effect due to the variation of the structure of Co
films. The AMR of Co film on Cr buffer layer is quite small (0.1%);
however, the MR of Co/Cr multilayers is almost one order larger than
the AMR of Co film on Cr buffer layer. An enhancement factor of 4
for the MR in Co/Cr multilayers by the interface roughness has been
observed. This suggests that the effect due to the spin dependent
scattering at the interfacial regions of the superlattice is larger than
that due to the spin dependent scattering in the ferromagnetic layers for
the MR in the Co/Cr multilayer system.
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Effect of the Waue-Shear Interaction on Gravity Wave
Activity in the Lower and Middle Atmosphere

F.S. Kuo AnD H.Y. Lue (& %48
J. Atmos. Terr. Phys., 56(9), 1147-1155 (1994)

Observaional results of the wave activities and the vertical wave
number spectra of the horizontal wind fluctuations and the temperature/
density fluctuations in the lower and middle atmosphere obtained by
various groups using different instruments at different locations are
reviewed and summarized. Then, we use a simple analytic model of
wave shear interaction to explain the wave-energy dissipation observed
in the stratosphere/lower mesosphete, the east west anisotropy of the
wave propagation, and the deceleration of the zonal mean flow, in
summer and in winter in the middle mesosphere, the annual variation in
the upper troposphere/stratospher/lower mesosphere, and the semi-annual
variation in the middle mesosphere. We also point out that the satura-
tion spectra observed in the middle mesosphere and the winter troposphere
are caused by wave motions in the strong background wind shear and
the low stability temperature profile, and that the saturation spectrum
is universally N*/2m°® (where N is the Brunt-Viisil4 frequency and m
is the vertical wave number).

Regio- and Stereocontrolled Synthesis and
Diels-Alder Reactions of
(Z)-2-(Phenylthio)-1-(trimethylsilyl)-1, 3-butadiene

SHANG-SHING P. CHoUu (B #47) AND MAo-Hsun CHAO
Tetrahedron Letters, 36(48), 8825-8828 (1995)

The title compound was prepared from 3-phenylthio-2-sulfolene
by (1) deprotonation with butyllithium followed by treatment with
chlorotrimethylsilane; (2) isomerization to the 3-sulfolene analog by
deprotonation and quenching with acid at low temperature; (3) thermal
desulfonylation. The Diels-Alder reaction of the title diene was also
studied.
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Stereoselective Synthesis and Diels-Alder Reactions of
(Z)- and (E)-1, 2-Bis(phenylthio)-1, 3-butadiene

SHANG-SHING P. Cuou (B % 47), DER-JEN SUN

AND Ha1-Pinc TAI
Journal of the Chinese Chemical Society, 42, 809-814 (1995)

Bromination of 3-phenylthio-2-sulfolene (2) with N-bromosuccinimide
gave 2-bromo-3-phenylthio-2-sulfolene (3) which was converted mainly
was converted mainly to 2, 3-bis(phenylthio)-2-sulfolene (4) by treatment
with sodium phenylthiolate. Thermal desulfonylation of 4 at different
temperatures in the presence of a base (DBU) yielded stereoselectively
the (Z)- and (E)-1,2-bis(phenylthio)-1,3-butadiene (6). These two
geometric isomers could be thermally interconverted. The Diels-Alder
reactions of 6 were also investigated. Only the (Z)-diene 6a could
undergo the Diels-Alder reaction; the (E)-diene 6b was in sifu converted
to the Z isomer before undergoing the Diels-Alder reaction. The
reaction of 6a with N-phenylmaleimide gave the cycloaddition product
7 with complete endo selectivity, but under daylight or during
chromatography it readily underwent a thioallylic rearrangement (o yield
8 wihe inversion of configuration. The cycloaddition of 6a with methyl
acrylate proceeded regiospecifically, but generating a mixture of endo
and exo isomers. The endo/exo ratio could be increased by using ZnCl,
as the catalyst.

Regioselectivity of Ene Reaction:
Dimerization of 8-Chlorobicyclo[5.1.0Joct-1(8)-ene

GON-ANN LEe (£ H4%&), CHAUR-SHENQ SHIAU,

CHI-SHENG CHEN AND JAY CHEN
Journal of Organic Chemistry, 60, 3565-3567 (1995)

2-Chlorinated 1,3-fused bicyclic cyclopropene, 8-chlorobicyclo[5.1.0Joct-
1(8)-one (6) is synthesized and isolated from the dehalogenation of the
1-bromo-8, 8-dichlorobicyclo[5.1.0Joctane (7) derived from cycloheptene.
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Compound 6 undergoes ene reaction to form two dimers, 8-chloro-
7—(8—chlorobicyclo[5.1.0]oct-l-yl)bicyclo[5.l.0]00{-1(8)—one (9) and 8-chloro-
7*(8-ch10r0bicyclo[5.l.Ojoct-S-yl)-bicyclo[S.I.0]0ct-1(8)~0ne (10) (ratio 1:30).
The compound 9 rearranges to vinyl carbene followed by intramolecular
carbene insertion to generate cyclic allene which isomerized to 2-chloro-
4—(8—ch10robicyclo[5.1.0]0ct-]—yl)cyCIOOCta—l, 3-diene (12).

Characterization of a Polypyrrole Microsensor
for Nitrate and Nitrite Ions

JonNG-Ru RAU, SHOW-CHUNG CHEN (m&#)

AND HSIN-WEI Sun
Electrochimica Acta, 39(18), 2773-2779 (1994)

Affinities of polypyrrole for nitrite and nitrate ions can be exploited
for use in jon sensing.Using modern microsensor fabrication technique
this has led to the development of a highly stable, sensitive and
fast-response sensor for nitrate and nitrite ion. Despite its poor
differentiation between these two ions and despite cationic interferences
from heavy metals present in high concentrations, it promises reliable
monitoring of nitrate or nitrite jon in a well-defined environment.

Structure and Thermodynamics of 7-Azaindole
Hydrogen-Bonded Complexes

P1-TA1 CHou, CHING-YEN WEI,

CHEN-PIN CHANG (# 82-F) AND MENG-SHIN Kuo
J. Phys. Chem., 99, 11994-12000 (1995)

The thermodnamics of a variety of 7-azaindole (7TAI) hydrogen-
bonded complexes in the ground state have been studied on the basis of
absorption Spectroscopy in combination with ab inttio calculations at
6-31G* level. The results indicate that the strength of hydrogen bonding
significantly affects the ground-state electronic configuration of 7AI in
both normal and tautomer forms. The enthalpy, 4H, of the association
reactions was calculated to be —14.2, —11.3 and —9.2 kcal/mol for the
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I:1 acetic acid/7AI complex, 7AI dimer, and methanol/7AI complex,
respectively. These values are in fair agreement with the experimental
results of —12.3, —9.5 and —6.3kcal/mol. Calculations also show a
stronger hydrogen-bonding effect in the tautomer complex forms than in
their respective normal forms. Relative energy levels of excited-state
double proton transfer are discussed on the basis of ground-state
thermodynamics in combination with the spectroscopic data.

Acid Catalysis of Excited-State Double-Proton
Transfer in 7-Azaindole '

CHEN-PIN CHANG (#4i-F), WEN-CHI HWANG,

MENG-SHIN Kuo, P1-TaA1 Crou AND JoHN H. CLEMENTS
J. Phys. Chem., 98, 8801-8805 (1994)

The acid-catalyzed excited-state double-proton transfer (ESDPT) in
7-azaindole has been studied. In carboxylic acids and phosphoric acids,
the formation of a 1:1 cyclic hydrogen bonded acid/7-azaindole
complex was observed with a remarkably large association constant of
>1.0x10°M~'. In contrast to alcohol-catalyzed ESDPT, in which the
slow ESDPT dynamics involve a large amplitude of solvent reorganiza-
tion, the rate of acid catalyzed ESDPT is much greater than the decay
rate (~1.0x10°s") of the normal emission, resulting in a unique
tautomer emission. The highly efficient acid-catalyzed ESDPT in
7-azaindole points to the biological application of 7-azaindole as a
suitable acid derivative probe in a hydrophobic environment such as in
the cell membrane.

Study of Droplet Configuration of Polymer
Dispersed Liquid Crystal Films

SuNG-CHANG PENG, JIUNN-WEN YU
AND SunG-NUNG LEE (&4

IUPAC International Symposium on Functional and High
Performance Polymers, Taipei, Preprints, pp. 357-358 (1994)

Polymer dispersed liquid-crystal (PDLC) composites have been the
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subject of many researchers during the last several years due in part to
their usefulness in making displays. In a PDLC composite, a liquid
crystal (LC) mixture with positive dielectric anisotropy is dispersed in
an isotropic polymer matrix in the form of droplets of micrometer or
submicrometer sizes. Such a PDLC composite can be cast into a thin
film that has a translucent appearance if there is a mismatch between
the refractive index of the LC droplets and that of the polymer matrix.
Under an applied voltage, the films change to an optically transparent
state provided the ordinary refractive index of LC droplets matches the
refractive index of the polymer. The refractive index of the LC is
controlled by the molecular alignment in the LC droplets. The present
study tries to establish the correlations between the molecular alignment,
droplet size and diclectric behaviors. Study the effect of the LC fraction
and the domain size of the PDLC film on the dielectric properties, as
well as on its switching voltage.

New Aspect on Di-z-[bis(diphenylphosphino)methane]-
dichlorotrigold (I) Chloride, Including Its
Crystal and Molecular Structure

Ivan J.B. LiN (4% &), J.M. HwANG, DA-FA FENG,

M. C. CHENG AND YU WANG
Inorganic Chemistry, 33, 3467 (1994)

The reaction of HAuCI,.4H,0 with dppm (PPh,CH,PPh,) in ethanol
produces [Au,(dppm),C1,]Cl, 3. This compound equilibrates with
Au,(dppm)Cl,, 1, and Au.(dppm),Cl,, 2, in solution. *'P NMR studies
at various temperatures suggest that the exchange rate between
compounds 1 and 3 is faster than that between compounds 2 and 3.
The free chloride anion in 38 is responsible for these exchanges. The
strong emission of 3 in solid is attributed to the short Au---Au distances.
Crystal structure data for compound 3-EtOH: space group C2/c, with
a=14.184(3)A, 5=18.556(6)A, c=20.597(6)A, B=97.56(2)°, Z=4, and V=
5,285(3)A".
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Electronic-Relaxation Dynamics in Solution

P.J. Rossky, B.]J. SCHWARTZ

AND WEN SHYAN SHEU (3 %)
Ultrafast Phenomena IX, 60, 53-57 (1994)

Results obtained via quantum molecular dynamics simulation with
electronic transitions are presented for the systems of a hydrated excited
state halide ion and the hydrated electron. The ability to simultaneously
describe the molecular processes and directly evaluate the ultrafast
spectral observables is shown to provide a unique window on the

underlying microscopic processes.

Graft Copolymer Networks of
Polyurethane and Epoxy Structures,
I: Dynamic Mechanical Properties

Po-Hou Sung (X&) aAnp WEN-GUEY WU
Eur. Polym. J., 30(8), 905-909 (1994)

The dynamic mechanical properties of polyurethane (PU) grafted
epoxy polymer networks have been investigated. The glass transition
region is successfully broadened on variation of the degree of phase
separation. The tensile strength initially increases with increasing PU
content and reaches its maximum value when the PU/epoxy ratio is
about 20/80.

7-Azaindole-Assisted Lactam-Lactim Tautomerization
via Excited-State Double Proton Transfer

P1-Ta1 Crou, CHING-YEN WEI,

CeEN-PIN CHANG (3k$i-F) AND CHIENG-HwA CHIU
J. Am. Chem. Soc., 117, 7259-7260 (1995)

The photophysics of 7-azaindole (7AI) have been studied extensively
since Taylor et al. first reported the excited-state double proton transfer
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(ESDPT) in the 7AI dimer. The current topic of ESDPT in a variety
of 7AI hydrogen-bonded complexes has important applications for
probing both solvation dynamics and biological systems. The ESDPT
reaction in 7AI hydrogen-bonded systems can be classified into two
categories. The acid, alcohol, and water assisted ESDPT in 7AI can be
specified as a catalytic process since the molecular structure of the
guest species (e.g., acetic acid in the acetic acid/7AI complex) remains
unchanged. On the other hand, adiabatic ESDPT in the 7AI dimer
results in a JAI"*/7AI" form consistin of an excited and an unexcited
proton-transfer tautomer (* represents the excited state). Since both
host and guest molecules change their structures, the ESDPT is a
noncatalytic process in which 7Al in the dimeric form acts not as a
catalyst but rather as a reactant. The latter case is important from a
chemistry perspective. In the acetic acid catalyzed ESDPT reaction,
the 7AI*—7AI™ tautomerization has been estimated to be ~13 kcal/mol
exothermic. Since the noncatalytic type of ESDPT requires simultaneous
tautomerization for both 7AI and its guest molecule, this process, from
the energy viewpoint, provides ~13 kcal/mol excess.
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Cellular Thiols as a Determinant of Responsiveness
to Menadione in Cardiomyocytes

WonG-Fanc TzenGg (¥ #%), Tzeon-JyE CHIOU,

CHIN-PENG WANG, JIA-LUEN LEE AND YEE-HSIUNG CHEN
J. Mol. Cell. Cardiol., 26, 889-897 (1994)

The role of intracellular thiols in menadione-mediated toxicity was
studied in neonatal rat cardiomyocytes. The scnsi'tivity of cardiomyocytes
to menadione was greater than that of skeletal muscle cells and 3T3
fibroblasts. Before cell degeneration, menadione induced marked deple-
tion of intracellular thiols and an increase of oxidized glutathione. The
sensitivity of these cells to menadione correlated with the level of
depletion of intracellular thiols. After incubation of cardiomyocytes
with menadione, glutathione reductase activity was inhibited and
lipid peroxidation was increased. Both dicumarol (an inhibitor of
DT-diaphorase) and diethyldithiocarbamate (an inhibitor of superoxide
dismutase) enhanced the capacity of menadione to induce cellular
damage and to cause depletion of intracellular glutathione. Decreasing
intracellular glutathione by pretreatment of cells with N-ethylmaleimide
or buthionine sulphoximine also increased menadione-induced cell
degeneration. Preincubation with cysteine or dithiothreitol suppressed
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the capacity of menadione to damage the cells. Menadione-induced
lipid peroxidation was also suppressed by the same treatment. These
results show that the oxidative stress induced by menadione in
cardiomyocytes results in the depletion of glutathion and protein thiols.
Both DT-diaphorase and superoxide dismutase can protect cells from
the toxicity of menadione. Cellular thiols are determinants of the
responsiveness to menadione.

Methods for Preventing Precipitation of Copper from
Copper Based Bactericidal Compostitions Containing Iron

M. N. ScuHrOTH, Y.-A. LEE (#F#4%) AND D.M. CHONG
United States Patent, 5, 385, 934 (1995)

Disclosed herein are copper based fungicidal and bactericidal
compositions having enhnaced activity against fungi and bacteria,
methods of using such compositions as well as methods for increasing
the effectiveness of the copper based fungicidal and/or bactericidal
compounds employed in such compositions. An aggregation inhibiting
salt is included within these compositions to prevent aggregate and/or
sediment formation upon the addition of Fe'* to the composition.

Genes Involved in Quinate Metabolism are Specific
to the DNA Homology Group 6 of
Xanthomonas campesiris

Y.-A. Lee (£#4&#%), C.-H. L1 AnD P.P. YU
Plant Pathol. Bull., 3, 237 (1994)

Genes involved in quinate metabolism (QM) were cloned from a
strain C5 of X. c. pv. juglandis, which is a member of DNA homology
group 6 of Xanthomonas campestris. The genes were located on a
42kb Kpn I-Eco RV fragment, pQM 38, which conferred quinate
metabolism capacity to X. c¢. pv. celebensis, which is negative on
succinate-quinate (SQ) medium test. Tn3-Spice insertional analyses
further located QM genes on a length of about 3.0kb within pQM 38.
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A 0.7kb Sal I-Pst 1 fragment internal to QM genes was used as a probe
to hybridize against total genomic DNA from 43 pathovars of X.
campestris. The fragment hybridized only to total genomic DNA from
the four pathovars of DNA homology group 6, i.e., X. c. pv. celebensis,
X. ¢. pv. corylina, X. c. pv. juglandis, and X. ¢. pv. pruni, and from
X. c. pv. carotae, which belongs to DNA homology group 5, but is
most closely related to DNA homology group 6. This 0.7kb fragment
was also used as a probe to hybridize Bam HI or Sal I-digested total
genomic DNAs from four pathovars of DNA homology group 6 and
X. ¢. pv. carotae. Restriction fragment length polymorphism (RFLP)
was found when total genomic DNAs were digested with Bam HI, but
all four pathovars of the group 6 contain a 5.7kb band, which is not
found in X. c¢. pv. carotae. No RFLP was found when digested with
Sal 1. Accordingly, quinate metabolism is the first group 6-specific
property both phenotypically and genotypically.

Isolation of Specific Probes for Plant Pathogenic
Bacteria by a DNA Subtractive Hybridization

C.-C. WANG AND Y.-A. LEe (F#44)
Plant Pathol. Bull., 3, 236 (1994)

The subtractive hybridization method developed by Kunkel et al.
was modified to isolate specific probes against plant pathogenic bacteria,
such as Xanthomonas campestris pv. campestris, and Erwina carotovora
subsp. carotovora. The specificity of cloned probes was first tested by
dot-blotting against genomic DNAs isolated from 43 different pathovars
of X. campestris, or from 6 different species of Erwinia, and then by
colony hybridization against saprophytic bacteria isolated from leaf
surfaces of cabbages, and soil samples from cabbage cultivation areas
in Young-Ming mountain. The results showed that the modified method
could rapidly and specifically isolate a probe for bacteria. The probes
isolated by the method can be used for epidemiological studies and for
understanding the functions specific to each plant pathogenic bacteria.
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A Repetitive Sequence Widely Distributed in the
Pathovars of Xanthomonas camppesiris Shows
Locational Variation within the Strains of
X. c. pv. Campestris

S.-P. CHu AND Y.-A. LEE (&44)
Plant Pathol. Bull., 3, 237 (1994)

A repetitive sequence was found inside the 1.7kb Sma 1 fragment
cloned from Xanthomonas campestris pv. juglandis. The sequence had
at least 6 copies in the bacterial genome determined by Southern
hybridization using two internal fragments separated by a single
restriction enzyme site as probes. Through hybridization tests,
homologous sequences were detected in several pathovars of X.
campestris, such as X. c. pv. campestris, X. c. pv. oryzae, X. c. pv.
oryzicola, X. ¢. pv. cassiae, X. c. pv. khayae, X. c. pv. lespedezae, and
some other pathovars, but not found in X. c. pv. phaseoli, X. c. pv.
physalidis, and X. c. pv. vesicatoria. A 05kb Awva II internal fragment
of repetitive sequence was chosen as a probe to determine the repetitive
patterns in the several strains of X. c. pv. campestris isolated from
cabbages in the cultivation areas of Young-Ming mountain. The highly
locational variation of repetitive sequence was found within the strains
of X. c. pv. campestris. The same phenomenon also occurred within
the strains of X. ¢. pv. juglandis. The results indicated that the
repetitive sequence were widely distributed in the pathovars, and may
cause genomic variation in each pathovar.

Molecular Cloning and Expression of the Coat Protein
Genes of Cf, A Filamentous Bacteriophage of

Xanthomonas campestris pv. citri

MEI-KWEI YANG (#% £ 42), HUEI-MEI HUANG,

YeEN-CHUN YANG AND WEI-CHIH Su
Bot. Bull. Acad. Sin., 36, 207-214 (1995)

Particles of the filamentous bacteriophage cf contain a major coat
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protein, the B protein with a molecular weight of approximately 6,000
daltons. In addition, a minor coat protein, the A protein, has a
molecular weight of about 50,000 daltons was also identified on sodium
dodecyl sulfate-containing polyacrylamide gels. A 3.3 Kbp Hind 11
fragment derived from cf genome was cloned into the expression plasmid
pG 308N, a E. coli plasmid which carries pL promoter. The recombinant
plasmid pG 33 and a series of deletion derivatives of pG 33 were
constructed and transformed into E. coli DG 116 for expression of
phage cf genes. The genes code for A and B proteins of cf were found
to be located on the 2.0 Kbp Eco RI-Hine 11 fragment. The complete
nucleotide sequences of the 2.0 Kbp FEco RI-Hinc I1 insert were
determined. The deduced amino acid sequence corresponds to a
62-amino-acid-residae polypeptide that has a calculated Mr of 6,070
was identified by SDS/PAGE and immunoblotting as the B protein.
Another open reading frame (ORF 419) downstream of the B protein
gene (ORF 62) was found and shown to code for a polypeptide of 419
amino acids with a calculated Mr of 44,676 that exhibit considerable
identity to the A protein. The presence of promoter regions was
examined upstream of these two ORFs and the apparent capability to
activate the expression of these genes was also shown.

The Hysteresis Effect of Magnetizing Branch
on Torque Pulsations of an Induction Machine
with Nonsinusoidal Excitation

YUANG-SHUNG LEE (##& %) AND Kou-CueNG Hsu (4 Esk)

Proceedings of the IASTED International Conference,
Colombo, Sri Lanka, pp. 127-130 (1995)

A dynamic model that includes saturation and hysteresis of the
magnetizing branch is proposed for multiple winding machine. A novel
describing function is used to trace the nonlinearity of core magnetiza-
tion characteristics of an induction machine. Steady state and transient
analysis are presented to show the significant influence of the
magnetizing branch nonlinearity on torque fluctuation of an induction
machine with pulse width modulation (PWM) inverter excitation. The
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configuration scheme under investigation bases on multiple stator
winding sets with a multiple terminal inverter motor driving system for
different displacement angles between the stator winding sets. Simulation
results and Fast-Fourier-Transform (FFT) analysis demonstrate that not
only can the torque fluctuation amplitude be reduced, but the system
dynamic performance is also improved through a multiple terminal
inverter feeding to a multiple winding induction machine with proper
winding displacement angle.

Shaft Torsional Oscillation of Induction Machine
Including Saturation and Hysteresis of Magnetizing
Branch with an Inertia Load

YUANG-SHUNG LEE (&%) and Kou-CHENG Hsu (ifEzk)

Proceedings of 1995 International Conference on Energy Management
and Power Delivery (EMPD 1995), The West in Stamford
and West in Plaza, Sigapore, pp. 134-139 (1995)

This paper describes the torsional oscillation phenomenon occurring
in a multiple winding induction machine. It includes the effects of
nonlinearity and component interactions between driver and inertia load
through mass spring coupling system under starting transient disturbance.
The model fidelity is evaluated from the foreseen torsional torque of
the motor driving system by several excitation sources. Steady state
and transient analysis are presented to show the significant influence of
the magnetizing branch nonlinearity on the torque oscillation for an
induction machine with sinusoidal or pulse width modulation (PWM)
inverter excitation to drive inertia load. Simulation results and
Fast-Fourier-Transform (FFT) analysis demonstrate that not only can
the torsional oscillation amplitude be reduced, but the system dynamic
performance is also improved through a multiple terminal inverter
feeding with proper displacement angle between stator winding sets. In
addition, starting process analysis shows that the torsional oscillation
components can be substantially reduced by the selected starting
methods with proper switching coordination. The risk of premature
component failure due to the excess of the designed limit for dynamic
torsional stresses can also be deminished.
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Least Squares Order-Recursive Lattice Smoothers

JENQ-TAY YUAN (&£ 4&) AND JOHN A. STULLER
IEEE Transactions on Signal Processing, 43(5), 1058-1067 (1995)

Conventional least squares order-recursive lattice (LSORL) filters
use present and past data values to estimate the present value of a
signal. This paper introduces LSORL smoothers which use past, present
and future data for that purpose. Except for an overall delay needed
for physical realization, LSORL smoothers can substantially outperform

LSORL filters while retaining all the advantages of an order-recursive
structure,

A Universal Active Filter with Transfer Admittance
and Transfer Current Ratio Using Single OTA

Cuun-L1 Hou, YUuNG-CHANG YIN (HA& &)

AND PANG-CH1A CHEN

Journal of the Chinese Institute of Electrical Engineering,
2(2), 131-137 (1995)

A universal configuration for the current-mode first-order and
biquadratic filters using an OTA are suggested. The proposed current-
mode OTA filters can be easily cascaded with transfer current ratio
filters or any load impedances. Since current is the output of an OTA,
the transfer admittance and the transfer current ratio are very important.
This paper gives one circuit of the same biquadratic type (i.e., lowpass,
highpass, bandpass, and bandstop) for the two transfer functions
mentioned above. For allpass filter, it is impossible to use the same

value components to get two first-order allpass transfer functions at
the same time. All the capacitors are grounded.

Least Squares Lattice Smoothers for
Adaptive Equaalization
JENQ-TAY YUAN (EiE4) AND JOHN A. STULLER
Proceedings of International Conference on Telecommunications

(ICT 1995), Nusa Dua, Bali, Indonesia, pp. 55-60 (1995)

This paper introduces least squares order-recursive lattice (LSORL)
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smoothers for adaptive equalization. The LSORL smoothers use past,
present and future received data sequence to estimate the present
value of the transmitted data sequence. Except for an overall delay
needed for physical realization, LSORL smoothers can substantially
outperform conventional LSORL filters in adaptive equalizationfwhile
retaining all the advantages of an order-recursive structure.

Efficient Implementation of Binary Morphological

Image Processing

BriaN K. LiEN GZEH)
Optical Engineering, 33(11), 3733-3738 (1994)

Morphological image processing is an important tool for a broad
range of problems in image processing. A 5l2-entry table lookup
method is used for real-time implementation. But it is not efficient to
transfer this method directly into software. The author proposes a
fast software implementation technique, in which a 256-entry lookup
table containing neighborhood information is built and a dynamic table
lookup process is applied to reduce the number of logical matching
operations and the number of accesses of the neighboring pixels. In
this proposed method only the foreground pixels, which are pixels on
the object, are processed. Among the foreground pixels, only at the
starting pixel of each “run” of I's is it necessary 1O read the eight
neighboring pixels. For the other pixels, it is necessary (o read only
three neighbors. This method shows a significant improvement in
timesaving. In addition, for systems supporting fast access to consecu-
tive address memory, the author proposes another implementation, which
treats the image as a contiguous block of memory. Thus advantage is
taken of RAM technology.

Part Segmentation from Stereo

LiANG-HuA CHEN (i R #), WEI-CHUNG LI

AND HoNG-YUAN MARK LIAO

International Journal of Imaging Systems and Technology,
5, 206-219 (1994)

This article addresses the problem of segmenting objects into parts
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using stereo imagés. There are three components in the part segmenta-
tion process: surface segmentation, region grouping, and volumetric
models (superquadrics) recovery/segmentation. The rurface segmentation
process segments the image into a set of regions such that each region
represents a smooth surface. The region grouping process merges the
segmented regions into parts. Finally the process of volumetric models
recovery/segmentation recovers the part model and segments that part
into smaller parts if necessary. Because we use both surface and
volumetric models to drive the part segmentation procdss, we can
capture geometric properties of the object, and the application domain
of our approach is broader than that of previous approaches. The
performance of the proposed system is demonstrated with real images
and synthetic images. Experimental results show that the system is
stable and capable of handling a variety of objects.

A Bar-Code Recognition System Using
Backpropagation Neural Networks

HoNG-YUuAN L1ao, SHU-JEN Liy,

LIANG-HuA CHEN (FR B #) AND HsSIAO-RONG TYAN
Engng. Applic. of Artif. Intell., 8(1), 81-90 (1995)

In this paper, a bar-code recognition system using neural networks
is proposed. It is well known that in many stores laser bar-code
readers are used at check-out counters. However, there is a major
constraint when this tool is used. That is, unlike traditional camera-
based picturing, the distance between the laser reader (sensor) and the
target object is close to zero when the reader is applied. This may
result in inconvenience in store automation because the human operator
has to manipulate either the sensor or the objects, or both. For the
purpose of in-store automation, the human operator needs to be removed
from the the process, i.e., a robot with visual capability is required
to play an important role in such a system. This paper proposes a
camera-based bar-code recognition system using backpropagation neural
networks. The ultimate goal of this approach is to use a camera
instead of a laser reader so that in-store automation can be achieved.
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There are a number of steps involved in the proposed system. The
first step the system has to perform is to locate the position and
orientation of the bar code in the acquired image. Secondly, the
proposed system has to segment the bar code. Finally, a trained
backpropagation neural network is used to perform the bar-code
recognition task. Experiments have been conduced to corrobrate the
efficiency of the proposed method.
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