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- NOTE ON ORIENTABLE RULED SURFACES
IN E3 — CONTINUED

Y1-CHinG YEN

1. PRELIMINARIES

In a previous paper™, I found some properties of the conoid by
studying the total mean curvature of orientable ruled surfaces in E3.
In this note, I shall give some other characterizations of conoids.

By a conoid I mean a ruled surface which passes through a curve
with its generators parallel to a plane. We shall discuss the
following:

Theorem 1. Let an orientable noncylindrical ruled surface M
have a vector form

2w, v) = alu) +vdé(u), 1)

where o(u) is a base curve and &(u) the director curve of M,
lI8]]l = 1. Then M is a conoid if and only if

r= (8", 48! 68)=0. ' (2)
Theorem 2, Let M be a conoid with vector form Z(#, v) as
in (1), where o(2) is the striction curve and &(x) the unit-speed
director curve of M. Then
1) M is a right conoid if and only if
gl+8=0 (3)
2) M is a helicoid if and only if
¢'+8=0 and p(u) = constant, (4)
where p is the distribution parameter of M.
Theorem 3. Let a right conoid M in E? have a vector form as
(1), where o(x) is the line of striction and &(x) the unit-speed

director curve of M. Then the asymptotic curves of M other than
# = constant have the expression for » as
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v=CvV[p(u)l (5)

where p is the distribution parameter and C is an arbitrary constant.
Equation (5) also expresses the distances from the line of striction
to the asymptotic curves.

Corollary. On a helicoid M in E3 the helices form a system
of parallel curves and are geodesic parallels of M.

2. THE PROOFS

Proof of Theorem 1. For brevity, let the director curve & in
(1) be unit-speed, so that |é']| = 1. The vectors é(«) drawn from
the center 0 of the unit sphere X :2*+ 9>+ 2* =1 form a curve
C on X, and 8" is the curvature vector of C, hence 8" # 0. Since
8+8"=4"-8"=0,if in addition
r= (8", 8, 8)=10,

then the 3 non-zero vectors 6", ' and & are coplanar together with
' 1.8, 8" 1L 8" imply that

8 = ka. (6)
Then all the osculating planes of C spanned by &' and 8" pass
through 0, and it is known® that C becomes a plane curve on 3,
i.e. C is a circle with the expression of curvature vector as (6),

then C is a great circle of X, 8" being directed toward 0, we have
E=-—1, ie.

ol = —¢. )
If C takes the position vector
6(u) = (cosu, sinu, 0), (8)

then the ruled surface M with the expression (1) has its generators
passing through the base curve ¢ and parallel to the zy-plane.
Hence, by definition, M is a conoid.
Conversely, if M is a conoid, we express it as (1) with director
curve & given in (6). Then it is easily shown that (g8, &/, ) = 0.
If & in (1) is not unit-speed, we may reparameterize it as
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o(u) = pu(s), where s = k(u) is the arc length of u, and let o(u) =
o(h=*(s)) = (s). Then the vector function Z{u, v) now becomes
£(h2(s), ) = ¥(s, 0) = () + v als) . (9)

Thus, by (4), M is a conoid if and only if (a''(s), u'(s), u(s)) = 0.
Since 8'(u) = 4'(s)(ds/du) and 8''(u) = pM(s)(ds/du)? + p!(s)(ds/du?),
we have :

(8"7(), 8'(), 3(w)) = ((s), #(5), () (L) = 0. g.e.d,

From now on, without loss of generality, we take the base curve
o as striction curve and « the arc length of the director curve &.
Then we have for an orientable noncylindrical Tuled surface M the
expression (1) with the conditions

o 8 =9, _ (10)
18l = lig"li = 1. ; (11)

If for a conoid M, its director curve & takes the. form in (6),
then applying the equation of (10), we have the striction curve ¢ as

o) = (fg(u} cos udu, fg(u)sin ude, h(n)) g €32)

for every continuous function g and differentiable function A. Hence,
by (1), the conoid M has the vector representation

;(u, v) = (fg(u)_ cos udu + v cos u,
fg(u) sin udu -+ v sin u, h(u)) = (139

Equation (13) may be regarded as the general form of a conoid.
Proof of Theorem 2. If

alu) = a'(u) + 6(u) - (14)

is equal to zero, then together with (10), we have e'//8" x 8. Since
0/ X & is the unit normal vector to the plane to which the generators
are pai‘allel, 8" X § is a constant unit vector a. Let o' (u) = ¢'"(u) a,
say, then o(#) = é¢(u)a. Thus, M bas its generators always ortho-
gonal to the line of striction. Therefore, by definition, M is aright
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conoid. The converse is a straight forward computation from (13) to
get a(u) =0. We can easily obtain the general form of a right
conoid from (13) if we apply (8) and (12) to a(«) =0, to have
glu) = 0.

If a(u) =0, and the distribution parameter
plu) = (a'(u), 6'(u), 6(u)) (15)

is a constant %, then we have o/(u#) = ka = B, a constant vector,
which implies that o(#) = Pu.

Then M is swept by a moving straight line attached on the
line of striction in such a way that it rises and rotates in a constant
ratio. Hence, by definition, M is a helicoid. The converse is trivial
if we give an explicit vector representation for the helicoid.

Proof of Theorem 3. By [1], we have the DE. of the asymp-
totic curves of the conoid as

du[(p'(u) v — a(u)p(u)) du — 26(u) dv] =0, (16)

M being a right conoid, we have a(z) =0, hence by (16) we have
two asymptotic curves # = constant and (5). Since v in (1) is the
directed distance along u = constant, say #,, from the line of stric-
tion to the curve z(wo, v), the distances from the line of striction
to the asymptotic curves with the expression (5) have the distances
as in (5).

Now we prove the Corollary. Since M is a helicoid, we have
p(u) =k, a constant. Then equation (5) can be written as

v=CvVE =C, (17)

C: an arbitrary constant. Thus the asymptotic curves other than
u = constant are » = constant, each of (17) is equidistant from the
line of striction which has a constant vector B. Also u = constant
and v = constant are orthogonal, since F =a(u)=0. The curves,
» = constant make a constant angle with the line of striction:

godw " {atwdteal - B-B
[EA Vel + o’ + v* |lo'll VB« B+ |8l

= constant.
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Hence » = constant are helices, and form the geodesic parallels with
the generators x = constant on M.
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*We are not independent entities, alien to Earth.
Earth in turn is not adrift in a vacuum unrelated
to the cosmos. The cosmos is no longer cold and
hostile because it is our universe. It brought us
forth, and it maintains our being. We are, in the
very literal sense of the words, children of the

universe.”
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REGULARIZATION OF SINGULARITIES
FOR ONE-DIMENSIONAL NONLINEAR
HYPERBOLIC SYSTEMS*

NE1-Mao CHEN

ABSTRACT

It is well-known that the Cauchy problem for a linear hyper-
bolic system will have smooth solutions if the initial data are
smooth(), Unfortunately, it is not true, in general, that the solu-
tions of a nonlinear system will be smooth even if we have smooth
initial data, In particular, if the system is genuinely nonlinear,
F. John has shown in his paper® that we can not even expect the
solutions to be C% In this paper we shall study those singularities
more closely. And we find that if we choose a new coordinate
system the solution will be regularized.

DEFINITIONS

The differential equation we considered here is a nonlinear
hyperbolic system

wus + alu)u: =0 (1)

where u = u(z, t) is a vector with » components ui,..., #, de-
pending on two scalar independent variables x and £, and () is
an # X n square matrix. We also assume that the initial function

u(z, 0) = f(x) (2)

is infinitely differentiable and is of compact support. The local
existence of this solution was shown in the book™.

We assume that the system (1) is strictly hyperbolic, that is,
there are # teal and distinct eigenvalues A, ..., 4, of the matrix
a(z) for all |x#| <6. Let

N L e i ¢3)

We denote £1,..., &" the corresponding right eigenvectors (column

* This research is partially supported by the Chinese National Science
Foundation and the Research Foundation Fu Jen Catholic University.
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vectors) of the matrix @, and %%,..., " the left eigenvectors (row
vectors), respectively. We normalize them in such a way that

PYa=khy, aft=A¢8" (4)
and
ERogk =1, pigrk=34y, (5)
i,k =1,2,..., n. We also assume that in the region of consideration
the matrix a(u#) is smooth in .
The system is said to be “genuinely nonlinear”™® in the sense

that in the u-space the derivatives of each 1; in the direction of its
corresponding eigenvector & do not vanish.

NON-EXISTENCE THEOREM IN THE (x, {) PLANE

It is well-known for # =1 or # =2 that the first derivative u,
will tend to infinity at a finite time provided that the system (1)
is genuinely nonlinear®, When the number of dependent variables
is higher than two it is still true that #x; will tend to infinity at a
finite time but the proof of this® becomes much more complicated.

For #n =3, we introduce the scalars
oy =iz, ) =90, i=12,...,n (6)

then we have
e = 3 8. (7)
i=1
Define

Cikm = Ciam(u) = (%; (# () a(u + s$”‘(u))$*(u))) ML

§=0+

Then genuine nonlinearity implies that ¢;;; # 0 for all i = 1.2
The family of #-th characteristic curves for the system (1) is
the solution of the ordinary differential equation

%g”c Malz, 1)), (9)

which we call C;. Let
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denote the directional derivatives along C;. Then differentiating w;

along each C; gives

dw;

G = v Wy @
di kg:m ikm Wp Wpy

where

Viem = Vimk

Visi = —Ciii
e Aj — &m e
2Wiim = —Ciim —Cimi T X _'_—_—Cl'}m(v '7?'):
i# Ai— A
for m+i
SR R CRTRIRY | i
2vigm = PR WL R e

for k#i, m+#=1.
Equations (11b) and (11d) yield important relations that
viti + 0 for ail £

vigeg =0 for k#i.

(10)

(11a)
(11b)

(11c)

(11d)

Note, at # =0, a(0) has eigenvalues 11(0),..., 4,(0) with

Aa(0) <€ .o € 4(0)

We also can choose suitable signs for 7»(0) to make p;;:(0) > 0.
Then, by the smoothness of these quantities in #, we will have

that
vaile) >0, i=12....n
i) < Ap(v) for k<,
for |u]l <8, |v|<é with & sufficently small.
Let supp f € [ap, Bo] with sy = By — a&y. Defining
8 = sup, sa |f"(z)]

we have the following

(12)
(13)

(14)
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Theorem.® There is a positive number 6§, (depending only on
the matrix @ and positive number &) such that, for initial. f with
0<8 <40, the solution wu(zx, ) of (1) and (2) can not be of class
C? for all positive £.

The failure of #(xz,#) to be of class C* for all #>0 arises
because one of ; defined in (6) becomes unbounded at some finite

time. If we introduce
Wo = sup |ei(z, 0)], W{ =supwiz, 0)
£.% £.x

where oi(z, 0) = 27 (f(z)) « f/(x), then one of w; will tend to infin-
ity before the time

_ 4
LW (16)

Inequalities (13) imply that, for all |#| <4, there is a real
number 4 such that

min (4 —A4)=41>0. (17)
i<k

Let us denote the solutions of (9) by 2z = Xi(a, 2), i.e., Xi(a, t)
satisfies

B Xilo, 1) = 2(Xila, 1), 1)), Kilo, 0) = . (18)
Set a;(f) = Xila, 1), Bi(t) = Xi(B, 1), with

fh= 15 v raw
we have that, as long as the solution # exists,

Bi(t) < ayp(t) for - B=i and H=He. (20)
In other words, if we define the region

Ri= {(&, 1) | ai(t) < z < Bu(8))} (21)

which is called the i-th characteristic strip, (20) says that
RiNRp=¢ for i*k and > ¢.
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EQUATIONS IN THE (s, ) PLANE

Let o, denote the first w; tending to infinity, and let (Z, ) be
the first singular point. John shows that (Z, #) is in R,, and
near (%, ) all other @y, i# I are bounded like O(#). We consider
the I-th characteristics C; which is prescribed by the parametrized
equation

z'=X(ag, £) (22)
i.e., it satisfies

X Ww(Xa, ), ), X(a, 0) =0 (23)
Define the quantity

& =t ). | (24)
=0 gives the envelope of the family of curves (22) in the
x, t-plane. The second equation of (23) gives

(o, 0)=1. (25)

Differentiating £ with respect to £, we obtain

%— = § C1rm Om § . (26)

(For detail, see John®.) Now we change the independent variables
x,f to o, f by (22) and introduce new dependent variables by

'Uf(ﬂ', f) = wf(X(aJ t)» t)
for i#1. (27)
1)1(6_‘ t} = E(ds t) (LT[(X(CF, ""): t)

Next, we look for differential equations for these new dependent
variables in the ¢,#-plane. Note that in the ¢,#-plane the images
of C; are vertical lines. So after suitable calculations we have

—;%‘ v = m%[ (cxam + 21’11@) ViV +E k’§¢lyikm Vp U (28)

20 =g (B, 2vm 00w+ 5 vamviva) (%)
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for i # 1. (From now on ¢ indicates an index different from I.) Here
d/dc means to differentiate along the corresponding characteris-

tics

A8 _ 05yl T G A
PNy "Ruik T T (30)

respectively. To insure that the system (28), (29) is quasilinear,
we shall also find differential equations for ¢ and z, which give

kgfg =cnvi+ mE-f:IC”m Um (31)

0 "
E—-:mél (At — Am) 0 £7 . (32)

Therefore, the problem of solving (1) and (2) becomes that of
solving the quasi-linear system (28), (29), (31) and (382) with
initial conditions
vi(a, 0) = 9'(f(a)) f1(a), vila, 0) = 7 (f(a))f(0) (33)
£(s, 0) =1, u(a, 0) = f(o).

We note that the strip R; is transformed into the vertical strip
ay <o =<p, which we may again call R, in the ¢,#plane. We also
expect that the image of R; in the o,¢-plane will at least be far
apart from R; after > .

MAIN THEOREM IN THE (s, ¢) PLANE

With initial condition vi(a, 0) = %'(f(a)) f'(s), we set

W;: = max |vi(s, 0)|, W= max ‘@'—(ﬁ;’;—olr.

We assume that

Wi<p8, W,<pd and TW,<p0, (34)

where p is a suitable constant, and T is given by (16). We recall
that “constant” means depending only on the matrix a and the posi-
tive number 8. Let (3, 7) be the image of the point (Z, ). We
have the
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Theorem. The system (28), (29), (31) and (32) with initial
condition (33) which satisfy (34) can have a smooth solution in
the ¢, ¢-plane in some region containing the point (7, #), provided
that @ is sufficiently small. In particular, there exists a smooth
solution of # in that region.

Proof. (i) First we change equations (28), (29), (31), (32)
together with (33) into integral equations

t
vi(s, t) = vi(a, 0) + j; [mZ/Il (ctim +2v0m) V1 Um

+C X vikm s vm | dt (35)
Eym#£L

vl(ar t) = 'U:(p:, O) + f = }u [Z 2V|[m Vi VUm
+¢, §¢r Viem Uk v,,,]da (36)

where the integrations for each i+ I are taken on (see (30))

% =ﬁ with ¢=p; as ¢t=0.
 §
Ca, =1+ [ (crvi+C T crom o) dt (37)
m£EL
14
wa, ) =F@)+ [ B (b= Au)vaémar. (38)
m#£L &
Note, in (38), # is a vector function with # = (s,..., #.). We

are going to solve (35), (36), (37) and (38) by iterations.
Since all ¢jgm, ¥jem, A7 are smooth in #, there isa constant M
such that

aV'km(u)
max {[c,am(u)l, [vipm(2)], o ’ - ’

[25(2)],

]}sM.

Let 4 denote the vector (v1,..., vn, &, #1,..., #n). We pick ® € Ct
which is defined on the region bounded by 0<¢<T + 1 and two
extreme characteristic curves C9%, C passing through the points
(ap, T+ 1) and (By, T + 1) respectively (see Fig. 1). Such a region
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t =T+
] 3 o
c RI CM
e e S e e T ) P = A e T
Qo Bo

Fig. 1. Characteristic strips in the (o, ) plane.

we call region G° We also require that %, 0) satisfies the initial
conditions (33) and its components satisfy

lv:l <K6, |nil<K8, |ul<d, [{I=M; (39a)
TV < Kf# where
V = max (sup sup |vife, )|, sup |vilo, f)I) (39b)
(o,8) il (o,f)eR]
TV, <M, where V,= sup {|vils, 1)}
Dsg$El[‘+1
Tj—g%‘sw{a, Tlg—?‘st (39¢)
O | <k, 20| <o, %‘ <K'0, |-g§|sxfa. (30d)

Here all constants K, K/, My, My, M, M, are suitably large and de-
pend only on the matrix & and the positive number & and .

(ii) We define v/ inductively as follows: Given +r/-! defined
on G7-1, which is bounded by 0=<¢<T+1/j and the curves
Ci-1, CiY, such that Y/-1e Ci, Ji-1(qg, 0) satisfy (33) and the
camponents of /-1 satisfy (39), 4/ is defined on the smaller
region G/ which is defined in the same may as G/-1. We define
Yri componentwise by substituting yYr/-1 into the right hand side
of equations (35), (37) and (38) which give

) ¢
v] = (o, 0) + j; [ﬂél (ciim + 2vim) i 0i?

+ ¢ B vun it ol dt (40)

ym7<L
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4
T RE  Y ”
3
W =fo)+ [ I, G — da) oliemat. (42)

Since the above integrations are taken along the vertical lines o =
constant, the values of »I, {7, u/ are well-defined over the region
G7. We also note that such +° defined above exists for we may pick
e, t) = v1(a, 0), v%o, 1) = vi(a, 0), C%aoa, £) =1 and %, ) = f(a).

Before solving for o4, i1, let us point out some lemmas.

Lemma 1. a) /> % for (g,¢) &€ R,, and
b) $>¢/> % for t<t, = (2/32) s, for 8 sufficiently small.

The conditions a) and b) in Lemma 1 hold for all &7/ in the
sequence whenever /-1 jis given except possibly for {° which
will not effect our proof. For convenience, we assume that °
satisfies a) and b). Lemma 1 says that, after we suitably adjust
for those w»/s, the curves &7 =0 lie only in the region R; and
e

Lemma 2. All i-th characteristics C; in the ¢,#-plane starting
initially at a point on I, lie outside of the region R; after £> 4,
if @ sufficiently small.

We define »! by

vﬁ = v:(pr, 0) + 'f"’i Xl—ih“ {qu:f:l 2vitm ‘U{_l f)‘i,,-l

+ gt . %ﬂ Vigm 057 vﬂ;‘} do . (43)

+

the integrations are taken along the correspondent i-th characteris-
tics

. SRS < i N

de ~ M(w? ) — A(uf71) * R
If £/-1%0 in the whole region G7, then (43) gives the values of
v! in the whole region of G’/. We now consider the case that curve
gi-1=1(0 lies in the region G/. ¢£7-'=0 must be in R; and
t > f,, Denote the intersection of the curve {7-1 =0 and the line
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t=T-+1/(+1) on the left by a’ and on the right by B/. We
only consider the case for A; >, that is, i <I. Let C! be the
i-th characteristic which passes through the point (a’, T7), where
T/ =T+1/(j+1). The curve C{ separates the region G/ into
two parts; one is the shaded region G;(y/-!), or simply denoted
by (—};i, the other one, the unshaded region G/ (see Fig. 2). For-
mula (43) defines the values of #{ over the region GJ. But for any
point in G, the curve C; of (44) may run out of the region G/-!
as ¢ decrease. Formula (43) may not be used to calculate the
values for »f in G;’. Nevertheless, since /-1 is given in the
region G/-%, for points in the neighborhood of C!, v can still be
calculated from (43). Therefore, we can extend the values of o/
into the region G/ such that »/eC' in G/, If v} satisfy the
inequalities (39) in G, then we can arrange the extension of 2! so
that they satisfy the inequalities (39) in the whole region G/.
This kind of extension is not unique.

;Jﬂ‘t =0

e

G N

Fig. 2. The Region of G/ and Gi.

(iii) The right hand side of (43) contains p; and the relation
involving p; and o, t is given by (44). Let us denote this solution
of (44) to be

t=ti(a,p:) with £=0 as ¢=p;.

It is always possible to solve p; as a function of ¢ and £ More-
over, we have the
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Lemma 3. 0¢i/0p; is bounded away from zero uniformly in G}
for those Y/ defined in this iterative scheme. In other words,
there is a constant A such that

6':'::

Por = A,

Lemma 3 says that the family of curves given by (45) will not
form an envelope.

It is obvious that yYr/eC' and satisfies the initial condition (33).
By straight estimate, we can also show that 4/ as defined above
also satisfies inequalities (39). (For details, see Chen®). For the
contractiveness of the sequence 7, let us consider the +r/ defined
only in the strip 0<¢< h and (o, ¢) € G which we call D, Set

2] = i+l ]
with 2= (21, ..., 2Zu, 2¢, Zuyy --+» 2uy). Componentwise, we can show
that there are bounded operators K; K; with |[K|= 0(8),
[IK;]| = O(6) where | +| denotes the max norm, such that

—aat—zf = K;Zj_l
0 gi= 7}
K 2+ (%) — (i) O

2l = Kpzf-21,

There exist bounded operators K, K¢, K., K, with |[K.ll = (K.l
=0(8) and [[K¢| = |[K.ll = O(1) such that

%2 - (Re+Ro)el-

and

62’ = (K, + KJ)2/-2.
We integrate above from =0 to £=#k and have
12f] < Rl ll2?=2]]
l2{] < (4MA + o) [[Kall liz? I
24| < AIKc llz? =] + BlIK] 127
24 < ARl llz? =2 + Al llz7-2]] .

(45)
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We choose % so small and # so small that

7 max ([Rel, [Kal) < 3

max ([Kill, (4Mh + so) (Kl AIKoll, AlK.)) < -
Then (45) becomes

lefll < - lle? =1

Therefore, the scheme is contractive in the strip D,. Note that
this % depends only on 8, # and the matrix ¢ and hence the same
procedure can be applied on the strip one step up and so on®,

(iv) If we start the scheme in the strip 0<f<h with
Y*e C® then we can have the limit function ¢ & C®, too. In
order to have a C*® extension into a region which covers the point
(7, £), we pick the next strip to be A —e<t<2h—e for ¢<h
The new sequence Y/ defined in 2 —e <r <2k —e will converge
again to a C® function, which we still call .

In each step, we calculate the value

t=1lim {t;|¢ = ¢4, ¢’ is the component of Y/, j=1,2,...]

where #; =inf {t| {(o, t) = 0}. We repeat the above procedure until
there is some integer P such that (P—1)A—(P—2)e<?
<Ph—(P—1)e. Thus we will have a smooth solution ¥ up to
t=Ph— (P —1)e. Note above arguments can not apply to the next
strip Ph—Pe <t < (P+ 1)k —Pe since at the new initial line
t =P(h —e) the tangent of C; will be parallel to the z-axis.

We make the following conclusions:

(1) For ¢<ip=P(h—e)+e, the sequence ¢’ converges to ¢
and the lower limit turns out to be a limit, i.e., 7= 7.

(2) The point (7, £) is in the strip fo —h <t < t». We can
pick the final 2 sufficiently small so that in the final strip, the
values of ¢ are small and that the strip is under the curves
Cﬁ, for i=1,2,...,n and for j=N for some N. Therefore, the
limit function ++ satisfies the differential equations (28), (29)), (31)
and (32). '
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(3) The solution is unique up to #=71.
(4) The extension over #3>7, particularly for points near
(3, f), can not be expected to be unique.

Corollary. The coordinate transfomation (22) is smooth.
Proof. Since { = X,(s, ¢t) is smooth so is X(a,?).

The coordinate transformation for (a, #) to (o, #) is smooth.
The singularity of the smooth transformation (22) is the curve
¢ =0, and the point (4, 7) is a cusp singularity.
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TWO-PARTICLE CORRELATIONS AND
THE STATISTICAL MODEL

JEN-I CHEN

ABSTRACT

Two-particle correlations of high energy multiparticle reactions
are calculated and analyzed with a simple statistics model proposed
by the author. Comparison with experiments is well discussed.

1. INTRODUCTION

In a previous paper, the author has proposed a simple statistical
model® for high energy multiparticle reactions, which has interpreted
the following phenomena successfully:

1. constanti total cross sections;
small transverse momenta, but large in wide-angle scatterings;
low multiplicity of particles produced;
angular distribution of produced particles;

A i

. single particle inclusive spectrum.

The area of two-particle correlations was left untouched, for the
reason that experimental data were nol so conclusive al that time.
This paper is devoted to investigating this problem for the com-
pleteness of the statistical model.

The statistical model is based on the following assumptions:

1. The probability for the reaction from an initial state [i> to
a final state |f)> is given by

14 1 f2]2 = const. I; - Fy (4 )

where I; is the inleraction factor assumed to bhe
I;:fdxdydzdf

integrating over the overlapping space-time of the two interacting
particles in the initial state. Fy is a decay distribution of the
resulting thermodynamics equilibrium state (called fireball), which
is assumed to be equally probable for all channels available.
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2. The decay volume of the fireball approaches a constant in
the high energy limit.

3. All possible particle and resonance states are approximated
by an average mass spectrum,

p(m) = cm=5% ™ + . g; 8(m — my) (2)

where b = (160 Mev)~?, and the second term takes account of low
lying discrete states with degeneracy g;.

Some definitions of relevant quantities should be introduced
before proceeding. For the single particle inclusive process,

at+b—-c+X
and the two-particle inclusive process,
at+b—-ct+d+ X

where X stands for anything else, the respective normalized single
particle and two-particle inclusive spectra are defined as

> T d®
pes(be, S) = hfd ‘Tﬂdﬂ;j‘abs;:c 1 X i
and
— - n 6
AR e (4)

where ¢qp is the total cross section. One two-particle correlation
function is defined as

Co4(Be, Day §) = 0% (Pes Bar 5) — 055(Be, 5) 0%4(Bas ). (5)

For simplifying data collection and presentation in multiparticle
reactions, in practice, new variables (called rapidily) y; are in-
troduced as

pin = wisinhys, E;= micoshys, pm= (m}+p3,)" (6)

using the fact that transverse momenta p;. are usually small
(~0.4Gev/c). Consider ;. almost constant, one has dpi = E; dy..
Experimental data are usually presented in terms of the foilowing
two correlation functions,-
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R (ye, ¥a, s)
dtola+b—>c+d+X)

= Gabdycdyd = (7)
do(a+b—c+X)  _dola+b—d+X)
Gap dY.c Oap AYa
[y @ pesd? pas
= (8)
fP?:b d*pe.. fﬂib d?Pas
noling dpiy = E; dy;, and
RAY) = [R&We, v, )00 —va —Ap) dyedya.  (9)

In some cases, the normalization factor ¢,; is replaced by the total
inelastic cross section giner.
By definition, the total cross section is equal to

t0s = o B [d 08 ps.. a0 <6 | By B B (10)
0 m=1

where v, is the relative velocity of particles @ and b, Ip_;, ﬁ;ﬂ,)
represents a n-particle final state. According to the basic assumption
(1) of our model,

[<i | p1 By . .Pwp|? = const. I; - F; .
From the definitions of Egs. (3) and (4), we find

0%5(Be, $)

B 4 B dPpr...dpr...d*pnd(Di — Do)

- Oap Vo n=14=1
< | By Da- - Bad
°z° ne [dpr...d Dus BBy, Do Do B)

i Ec @ - - — -
Z St a0 F BB B )

= E. gln.c Wi(n, n,, ]5:.)

where W(n, n., p.) denotes the probability of a ¢-type particle in

]5;) state for a m-particle final state with #n. c-type particles. In
terms of statistics average braket,
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#ia(Be, 8) = Bolne - 2520) = Eoue (o> (1)

where m(j;,,-) is the number of c¢-type particles in | iﬁ) state.
Similarly,
pidb(j_;n; 5:11 S)
Ec Ed oo Mg ng . s — — . -
e T E Z Z dpld ﬁna(?'l—?c)a(?:"?d)

Ogp Vo n=2i=lj=1
o [<i [ 1. Dup]?

=E.Eq 3 (neng —nedea) Win, ne, na, be, ba)
= B Ba{ (1 — %2) neBo) naa)). (12)
From Egs. (5), (11) and (12), we obtain
C',:,dﬁ(f_;u ;d: 5)

= E. Ea[ (1 — 024 ) e Be) ma(Be D>

— <ne(Pe)> <nalBa)> ] (13)

In the high energy limit, it is appropriate to take the most
probable approximation for the statistical distribution, i.e.,

= e LR —: bosons
iy = mf = efRi F 1 (—!—: fermions) (14)

where V is the decay volume, and M a normalization constant.
Then

=t o e M: V*
Ch > Be Ba [ (1 = 025) e tycorma )
MV MV
efle 1 gPEaF1
E. E, M* V* L

= T I . e G5

The remaining term does not indicate a real correlation belween
particles, but rather a term reflecting the fact that the same particle
can not occupy two different states at the same time. Thus there
is no correlation in the high energy limit.
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II. STATISTICAL FLUCTUATIONS AND
CORRELATIONS

As we have seen, there are no correlations if the most probable
approximation of the statistics distribution is taken. We will proceed
to study whether small fluctuations around the most probable
distribution would lead to correct correlations.

Let n.: be the number of a-type particle in its ith state. For
a final state characterized by the occupation numbers {1, #ss...},
the number of possible combinations is

W({na)) = H”n'—, Mue, Sna=n (16)

where w,; is the number of ways for distributing #.; particles into
g.: ith states, that is equal to

1)
et (bosons)
wei = : (17)
Qai (fermions) .

i (Gai — Hai)!

Naturally, {#n.:;} must satisfy the constraints of energy and momentum

conservation,
Z #etEei = E
zi . (18)
?;_ RaiPai = 0.

in the center-of-mass system.
By the assumption of equal probability for all final states
available, the probability for the state {#«;} should be

) = Wnal)

P([ndl}) - mZ'nW({nc“_}) (19)
Assuming the number of particles is large, one can take Stirling’s
approximations for all factorials. And by the method of Lagrangian
multipliers, from Eq. (16), the most probable distributions are found
to be

R 20
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where B and 7 are constants fixed by conditions (18). Since the

constraint
. ) . 3
f”::i’ai:fp(m)dm = ﬁyd?” 219
(m;:_ e,gz-rr-? F 1)(27!)3
implies 7 = 0, therefore
et mtd. Gaivinlag b L 1 @1
By g eﬂ(Edl"‘"a) B 2 e nd/n i )

Next expand W({n.:}) around the most probable distributions
[nZ.),
In W({na1})
=InWk+ 3 50
&,1 N
1 0% Iln W*

5 w, Bt OngiOngg
. (nd,-—n:‘.)(nﬁj-—n;:-)-l-... (22)

In W* « (541 — n},)

and neglect higher order terms. The Lagrangian multiplier method

gives

9In W* _ o
'—and_._ T BEdl’"‘?'ﬁw (23)

Thus the second term of Eq. (22) vanishes for

01n W*
o, i

=5 (BEu +7 « D) as —n¥;) = 0

i (ncﬁ i n:‘)

by the conditions (18). Furthermore

0% 1n W*
Ongi Ongj
1 g i} 1
e 7 == E af = (E:,_ = m) 60,5 5;‘;‘ . (24)

But

ik 1
@.B.1. (7 I Ea"ﬂ)(”‘“‘ —n3)(ngg—ng;) =0

noting that Xinu = Din}, = ne. It follows that
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InW({arh) = In W* — - 5 Agi a3,
i

or
W({ai}) o W =13 Tt At 5a (200
where
1 1
Ryp =e T e
n¥, ny; & Qo (26)

Tui = Mol — 0Y, .

For brevity and without confusion, hereafter we shall use a
single index (i) in the place of (ai). From Egs. (19) and (25), the
probability for a particular distribution {#;} is given by

P({”i})ﬁNoeﬂh’zZ‘.!A‘xiz (27)

where N, is a normalization constant. The conditions (18) can be
introduced as following

P({ni}) = Noe¥2Z4 % 5% 3( T 4 Bo) 8(Z @i pi) - (28)
The statistics average of a quantity f can be written as
= EP({”‘}) oif
~ N, [ Tl doi =42 Z1% 54 8(3 24 Ei) 8( @i 0) (29)

where 3, has been replaced by integrations of all xi's over
(—co, +o0). This is appropriate if the particle number is large
enough and fluctnations are presumably small.

If the kinematic constraints (8-functions in Eq. (29)) are released,
then the fluctuations '

> =0

1 (30)
{pizxsy = T:ﬂ.'; .
In other words,
{nip = nf
(31)

(o s> = mimsd — uidnsd = —g—Bis
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Substituting into Eq. (13), one gets
Cﬁ,da (51; 52, s)
BB ad 0 + BaBy 5 Bead. (32)

There is no correlation in this case.
Taking account of the kinematic constraints, we calculate

{z1> = N, f IT dzi e~ 2Bt % #5% 2 8( X 21 E4) 8(Z zipr)  (33)
with
Nt fl} drie 2 Bi%i5 35 2 By) (5 @i ) -

These integrals can be evaluated by replacing the é&-functions by
their Fourier integrals. Let

Tepi =T Pix+Ydhiy+z2piz +1E;
dr = dr dy dz dt
then

<> = No(2m)t [ eV Zurixt o) 85 22 Ba)
< 8(3 @i51) de 11 da

= No(Zn')*f dr I e V20 8 2p + o2y IVED?
i
TP DNAL (1 o 2y 845) dxs

= —Ne(2a! Iy 22 [ A2 ot g
=0, (34)
Thus <n> =n}¥ and <@ix;> = ningd — <md<nyd. Similarly,

o 1 < P
rixiy = R Ay “E:lﬁmﬁh TuTy
+ - 0ea 8 — 51) (35)
where
fe‘”zz#v fuvTutyvo,r, dr
Tat, = (36)

fe—lfﬁ‘.E Guytuty dr
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and
Auy = ZJ pbjg:“ = (2\;)3 IP(M)dm -—j"—i:f;“ dép;
s
=2 A’; Bui (37)

since A; depends on p? only. The last term of Eq. (35) represents
the standard deviation of #; from n}. The integration of Eq. (36)
can be done by routine procedure'®, the result gives

1

Qup

-1 _

TuTy =a:“ =

Ouy - (38)

Therefore

1 4 i 1 — —
@iy = —gar B Pel 4 s ei-5)  (39)

T
and
Ce (B, B )
~E B[ (L= 254 ) (o 9ea 85— B)

= e
1 . ﬁ pﬂ# ac
~EE A e ) T aw g | a

1II. TWO-PARTICLE CORRELATIONS

For the calculation of two-particle correlations, first we estimate
related constants with the approximation in the high energy limit.
Egs. (20) and (26) lead to

A Ve iRt
il e i ot S

- i(sinh2 + B(E; — w)) >0
gi \cosh® 3 B(E; — vi)" —

e (41)

~

as E - co. By the definition of Eq. (37),

an = G = G = § 5 —5- > 5 Tar ) (42)
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noting that A; depends on p? only, and

— Ef g
au=3 g =T arEl

3
:fp(m)dm e g—fe ‘(fzi)f
2y a e, Ndip
__-——aFfp(m)dmee £ W
~ _ OE
__—-aF (43)

where E is the total energy. Furthermore
ayy — (@1 + @z + ay4)

— mﬁ ~ T ]
=R =GR,

+ ¥ Vdp
~ —512 pbm 4,00 Be yap
__fcm e m® e=B¢ gm e

2 Vdip
e s -5/ bm p—fe — i
& A fcm Mgl e=0s dm @r)°
(i
bt (44)

where % is the average multiplicity. Both E and % have been cal-
culated and given in Ref. 1. As E— oo, or 2= (8 —b) my— 0,

o HTEN el 27
B (2nB)3° m°[ Fa 8Bm, E‘(m)]

v (45)
3~ _.e____. —
B o gy [—lnz+7].
By derivation, we get
au~E- 2o~ oo (46)
aij_:agg:a:;sz%l('g“g——'%%—) zl—ss)ﬁE‘OCE. (47)

As energy increases, @ > di..., the contribution of the ay
terms to {z; x;> becomes less important. In other words, the energy
conservation constraint becomes less important to two-pdrticle
correlations. As E—co, guu— o and so {xix;>—0. There are
no correlations in the high energy limit.
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In our statistics model, the distribution in the CM system is
isotropic in momentum space, first we will define and investigate
a momentum symmetric correlation function

R(Ap) =
i E.E, d“a iia;;;:ﬁt 2+X) 5B AD) I*py dih, o
S atpetidtn, 0 WhhtD #nn
=+ [CaBo B 98— o — AB) 1, (48
with
Io = [ Bi By nd nd 68 — B — AP dpr d® Ch)

Take the approximation,
N~ R _pE
<nl>— 7 e i

8
2m?

recalling that p? in the CM system is usually small (~0.4Gev/c),

(50)

Eiomi[1+ 5th + 000 ]

after tedious but straightforward calculation, we find

~ (Bena\ mamyy W _ R 3(my 4 ms)
Io ( n? 53 e 2)[(1+ 2Bm1m22
e 3 Ap? —apiyet
B(my + ms) ) & (my + mz)z:le i

g2 = B(’;?;j‘m?:?z) , &= 2(m1;—m2) (51)
L = fE1 E, A, A, ( lau LR ;4 2)3(2‘»‘1 Do —AD) d® Py d°ps
~ Heng vn® o e Smy s
g nz CS o i z){ an  B{mi + ms)
3(mi + md)
2 (mm + g ) ]
- MEms __2_ il 1 ol ,—an?re?
* T+ ma)? (a“ an)"‘f‘-’}e “ (52)

L= [EEy 05— 5) 85— 5 — 89) d*pud*p

It

2 ,—pm — B
e-fmiy/ 7 ca (L+ 2> )a(Ap>, R (53)
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and

1235 —1I 0.
R(Ap) = (n) [ d 1]- <ncd> : (54

For like particles, m; = m. = m,

R(Ap) v 8 2oom (1 + zgm - 28) 545
An?
—a[1-(1+ zgm) o ] (55)
28m + 6
S (23m+3) [au : ]

after negleting 8.4/<n.>. The correlation length estimated from
above equation is about

iy Aﬁugg dm . (56)

For direct comparison with experiments®#®, we proceed to
calculate the correlation functions R%(yi, 7., ) and R(Ay). In

similar ways, we obtain
= f Ey E; ) <nop d® pro d Pon (57)
~ f 1 pts COSh Y1 cosh ¥ @=F(#1008h 1+ 420080320 (D72 by dipya Pou dien
~ (27)? f 1 pt2 cosh ¥y cosh g = 8C#100sb Yt uacosh¥2) vy, Jusy p1o dpsg

v}
~ (27)2 (L”lﬁ@) cosh 9 cosh ¥,

« gt (] 207 4 2100 (1 4 2651 4 2450) ,
t; = PBm;cosh y; (58)

i 1 P '5¢+ﬁwﬁ n E1E2
o BN v e e LT S N

o~ (2n)?2 f 28 pd cosh y1 cosh y,
sinh #; sinh %, + cosh v, cosh yg) ERE
@11 gy

sinh ¢, sinh ¥, + cosh 9, cosh yz]
11 773

. e-p(nlcoshy1+#2coshyz)(

~ (23”) : m? m3 cosh ¥, cosh yz[

« e~ (1 4 3471 + 6572 + 6701 + 317 + 6477 + 617°) (60)
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L= bes [ BiBay— 05— 50) dprudip (61)

zacaa(z’?m—qu}fEie‘“ldzpu

2mm;

> 8cq 0(Yr — V) el + 3714 6673 - 673) . (62)

Substitute Eqs. (58)-(62) into Egs. (8) and (39), we obtain

Ritdb (ylj Yz, S)

= (1 _ _0ca L-1 Oca
o s i et e
A acd B
~ (1 - <n> [2nmlcosh o €i8ea 8y —v2)
—m;mz[smhyéimhyg 1 cosh yl cosh y2](] o+ t“)]
_ 3cd’
<ney | o=

after neglecting higher order terms of # inverses.
By definition,

R(AY) = [ R, (01, vs, ) 81 — v2 — Ay) dys dys (65)
= fR'i;’ﬁ(yz-l-Ay, Y2, ) dys (66)

The integral diverges if %, is integrated from —oo to +oo. In
fact, the limits of integration should be determined by energy and
momentum conservation,

E, + E; = m; cosh y1 4+ ms cosh y;
= m; cosh (¥, + Ay) + mycoshy, < E

(67)
2 pisinhy; = 0.
The solution of Eq. (67) is estimated to be
E
Ymazx — ymln%ZCOSh -1 2C
——21nE —21n2m: cosh 5%
my=my (68)

Hy= ity

Ymax -+ Ymin = —2d —— "‘A'y
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where
= (m? + m? -+ 2m1 m. cosh Ay)* —— 2, cosh Azy
??113”12
4 = tanh-1 — Sinh Ay Ay i
5 -

3 4 coshAy ™i=™:
my "

Finally the integral of Eq. (66) is evaluated

B(E[4)
R(Ay) ~ (1 — (67’::3 ) { 16§ i dea 8(AY)

— 1 M2 [2_;; (COSh (?jmax"}“?jmln +A?j) Sinh (?]mnx'—ymln)
— (Ymax—¥Ymin) cosh Ay)
+ ZL (cosh (¥max+¥min+AY) cosh (Ymax—Ymin)

Ay4

4 (¥max—¥min) cosh A?j):l}

Bcd i
= > (Ymax — Ymin)

~ (1= 2o ) (o errseab(ay)

{nep
ot E? 1 ¢ 3m*cosh® (Ay/2)
mams [ S strias E? )
16m* coshz(Ay/Z) 12
A4 (] ) )

¥ E ) : T
— cosh=t oy cosh Ag{ = )}

E . Bcd ("JO
dm cosh (Ay/2) <{me> ° )

— 2 cosh™?

IV. DISCUSSION AND CONCLUSION

1. The correlations calculated mainly come from Kkinematic
constraints of energy and momentum conservation, and vanish in
the energy limit. The correlation length of Ap is about 4m. These
results are compatable with experiments.

2. The first term of Eqs. (64) and (70) represents the standard
deviation of n;. Terms with the 8.4 factor exist because one particle
can not simultaneously occupy two different states. They do not
represent real correlations.
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3. From Eqgs. (37), (39) and (41), we find that .. >0, and
A; >0, thus the correlation {x;x;> is always negative except the
unrelated last term.

4. Eqgs. (64) and (70) are statistical average correlations. For
zn and KK correlations, the degeneracy factor g; of such low mass
states, shown in Eq. (2), must be taken into account. The effect
can be estimated by consideration of isospin conservation(,

5. Hsu‘® has made computer calculations of R(Ay), considering
only energy conservation, i.e., keeping only a, terms. The results
are found to be in good consistancy with experiments®®, except
their signs are different. Tahle 1 shows the result of R(Ay) at
Ay =0 and E =200Gev. Since the correlations Resy used in Refs.
3-4 are normalized by o instead of a,.3, an additional factor
Oinet/dap (~0.7) should multiply Riue in Table 1. This makes the
results even better. By inspecling the function dependence of Eq.
(70), we find that the inclusion of a5, terms would lead to similar
results, although these terms dominate as energy increases.

Table 1. Correlations R(Ay = 0) at 200 Gev

Riheo(0) Rexpt(0)
LAt A —0.53 0.3
bR o —1.208 0.65
¥t —0.494 0.3
K0 KO —3.143 2.33:£0.54
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“It is the so-called ‘scientific revolution’, popularly
associated with the sixteenth and seventeenth
centuries, but reaching back in an unmistakably
continuous line to a period much earlier still. Since
that revolution overturned the authority in science
not only of the middle ages but of the ancient
world—since it ended not only in the eclipse of
scholastic philosophy but in the destruction of
Aristotelian physics—it outshined everything since
the rise of Christianity and reduces the Renaissance
to the rank of mere episodes...”

HERBERT BUTTERFIELD
The origin of modern science
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REALIZATION OF STOCHASTIC LINEAR
CONSTANT SYSTEMS USING
LUENBERGER’S CANONICAL FORMS

ZuoN-Hua Luo

ABSTRACT

This paper describes a new algorithm’ for realizing the
stochastic linear constant system from the output covariance func-
tion. This algorithm makes use of the two Luenberger’s canonical
forms to symplify the equations relating the system matrices to the
output covariance function. It is shown that the computational
efforts required are considerably reduced and the set of equivalent
system noise covariances in the sense that they all lead to the same
output covariance function is explicitly described.

1. INTRODUCTION

The stochastic realization problem has long been studied in
the engineering literature-1, Some papers are mainly concerned
with parameter estimation®-%, while others tend to take advantage
of the system structure and require less computational effort®-1b,
This paper gives a new algorithm for the stochastic realization
and meanwhile solves an important problem which arises in the
realization.

For the state-space representation of stochastic linear constant
systems, two different system noise covariances Q’s may lead to the
same output covariance function C;. Then the question is: Under
what conditions can this happen? In this paper it will be shown
that the answer is: When the system matrices are in the gener-
alized companion form®®, two different Q’s may lead to the same
C: if and only if the two Q’s have the same block diagonal sums.

The algorithm developed in this paper for the stochastic
realization is a two-step procedure based on minimal realization and
identification of Q. A minimal realization in Luenberger’s first
canonical form is first constructed from the output covariance func-
tion C;. Then this realization is transformed to Luenberger’s second



38 Realization of Stochastic Systems

canonical form. The transformation is easy since the parameters of
the second form can be directly computed from the parameters of
the first form®” and the nonsingular matrix required to make the
transformation can be also easily obtained from the first canonical
form®®, The next step is to convert the second canonical form to
the generalized companion form for identifying Q. This conversion
simply involves the rearrangement and augmentation of the system
states. After the generalized companion form has been obtained, it
is used to simplify thé covariance equation and to identify the Q.

2, LUENBERGER’S CANONICAL FORMS

In this section we derive Luenberger’s canonical forms in a way
quite different from the original derivation in his paper®®. We
consider a linear constant system described by a difference equation
of the form

z(t+1) = Fae(l) + Gu(?) (1)

where x(f) is an n X1 state vector, u(f) is an m x1 input
vector, and F, G are respectively # X% and # X m constant
matrices. It will be assumed that the pair (F, G) is completely
controllable and G has full rank, i.e.,

rank [GFG...F*-1G]l=# and rankG=m.
Given the pair (F, G) we have the following vectors:
Qb -elms o B2 n, o BT g, (2)

where g; is the iéth column of G. Since (F, G) is completely con-
trollable, it is always possible to select # linearly independent
vectors from (2). Selecting the first » linearly independent vec-
tors, we ohtain

Jyovs B2V gg., Qe Fm—tgs (3)

where the integers vi,...,vsn are known as the Kronecker indices
ofs it B G agieL

From the selection procedure just stated we have the following
linear dependence equations:
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e mIn(vs.,vj) J—1
Frrg; =X 2, WigpBEhget 2 e Frigy
t=1 k=1 vy,
7 i
Jj=1...,m (4)
where the last sum is taken over those ¢s (i=1,...,7—1) for

which v; <v;. We notice that the coefficients a;jp’s and ¢ij's,
together with the Kronecker indices w;’s, form a complete set of
invariants for (F, G)%, We consfruct a nonsingular matrix of the
form

T1:[gl...F"l“g;...gm...F"M‘lgm]. (5)

Then it is easily shown by direct computation that (F, G) can be
transformed to the form

Ay A . A

S P | R | (6)
Wt Bone e i

G* =T G =g of - y2] (7)

where Aj; is a y; X v; companion matrix, A;;(i#j) isa v; X yj
matrix, and ¢¥ is an # X 1 column vector, given by

Aii=[es €...8; ail

Ay ;=10 0...0 aij]

07 = €y typtunty_gtl
where

e; = the unit vector with a 1 in the 7th position
ay; = lain Gie ... @iy,

a;; = [aijy @ijs ... aiju;] if wi<vyj
a;; = [ain Qijg - Qijy; cij 0...0] if w; <y

The pair (F*, G*) is known as Luenberger’s first canonical form of
(BuG):

Luenberger’s second canonical form of (F, G) may be derived
by first forming a nonsingular matrix of the form
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ng{511...Sly1.-.sm1--.Smym], (8)
where
i=1 i
Siv;=0i— X i i=1,2,...,m
v <y,
L)
Sjtwj-v = Fsjy; — ‘Z_;l Aijy; i
{ V-S"V.

J 3

m
sj1=Fsjy — ‘Z_]l @ije Qi
2<v

i
Then it can be shown®® that (F, G) can be transformed to the
form
Bu Blg e Blm
el B ‘
Frx — T;l FTz = B.M B22 2 ( 9)

Bml Bmz L Bmm
G»*=T;G=[g!* g3*...03"%], (10)

where Bj; is a v; X yj companion matrix, B;;(¢5%j) is a v X v;
matrix, and ¢3* is an # X 1 column vector, given by

’jj:[ez 33---31’}' b.‘ff]
] R
=1

g7 = €y tenty; T ﬁ% dij €y tunty;
v i<,

where

by;=10[bjn bjja...bjju;l

b:-,':[b:'fl bijz---bijVj] if Vi< v

b:-i=[b,'j]_ b{jg...bijy‘- 0...0] if yi<y;
The pair (F**, G**) is known as Luenberger’s second canonical
form of (F, G). Itis noted here that the elements b;;:’s and d;/’s,
together with the Kronecker indices u/'s, form a second complete
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set of invariants for (F, G). Furthermore, this set of invariants
can be directly computed from the first set of invariants by the
following recursive formulas given in a previous paper®”

j=1

a) dig=cij+ Z}l ivitug! =18 e ma1s
rmi+
yir <y Fo=gb Tooai, 9 (11)
with vy <vw;
where diy is computed after dii+v, diti+s, ..., dicj—1y have been
computed.
b) bijs = aijr + , 2 dirarg G j=1...,m;
sy <v; k=, ooty vl (12)

It is noted here that the nonsingular matrix T, was first given
by Popov® in his study of the invariants a;j3’s and ¢;j’s. Later
Chan and Wang®® showed that it can be used to derive the second
form. This derivation of the second form is a generalization of the
well known method for the single-input case®®,

To determine the second form from the first form, however, we
need not compute the matrix T, It suffices to calculate the invari-
ants b;j’s and d;;’s from the invariants a;;:’s and ¢;;’s by (11)
and (12).

Now suppose that we are given a triple (F, G, H) where H is
the output matrix of the system (1). If we are required to compute
another triple (F**, G**, H**) = (T;'FT,, T;* G, HT,), we have to
compute the matrix T, in order to determine the new output matrix
H** = HT,. This will be discussed in detail in the next section.

3. MINIMAL REALIZATION

Suppose that the system (1) considered in the last section has
P outputs, then it can be expressed as

x(t+1) =Fx(t) + Gu(t) (13)
y(¢) = Ha(t)
where H is a » X # constant matrix. Let Y, Yi,... be the

impulse response sequence of (13), then we have



42 Realization of Stochastic Systems

Y:=HFG i=0,1,... (14)

The realization problem is this: Given an infinite sequence of p X m
matrices Yo, Yi,..., find a triple (F, G, H) such that the equation
(14) holds. A realization (F, G, H) is said to be minimal if the
size of the matrix F is minimal. Clearly, for any two minimal
realizations (F;, Gy, H;) and (F,, G;, Hy) there exists a nonsingular
matrix T such that (F,, Gy, Hy) = (T*F, T, T-*Gy, H: T). Fur-
ther, a minimal realization is both completely controllable and com-
pletely observable©®%,

To determine a minimal realization (F, G, H) from the sequence
Y,, Y1, ..., any one of the realizatian algorithms given in®*-25 can
be used. In this section, however, we shall describe an algorithm
which leads to minimal realizations in Luenberger’s canonical forms.

Consider the Hankel matrix

¥y NpesYoa
T, n—1) = e S
Y,,—]_ Y,, DR ng;-—z

where the dimension # is determined according to the formula

n = max rank T(0, 7).
1

The Hankel matrix T(0, # —1) can be factored as the product of
the observability matrix and the controllability matrix of the system

H
T, n—1) = HF [GFG ... F1G].
HFn—l

Obviously the Hankel matrix T(0, » —1) has rank » and its
column dependence relations are equivalent to those of the control-
lability matrix. Thus premultiplying the equation (4) by the
observability matrix S, we obtain the following column dependence
relations for T(0, n —1)
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mlu(ui.vj)

321
SEvigy = 3} kz_:l @ijs SFA-1¢g; & ‘ZI ¢:; SF¥ig;

i=l
Byehy
J=1...,m (15

In view of (15), we note that the Kronecker indices vi's of (F, G)
can be determined by examining the column dependence relations in
T(0, n —1). Also the elements a;;;'s and ¢i;’s of the first canon-
ical form (F*, G*) can be obtained by solving (15). _

It now remains to compute the corresponding output matrix H*,
Let H* be written in terms of its columns as

HY = TRfL Rl Lkt - ih

MY
Then it is easily shown by simple matrix operations that
5= HA Fr)i-agx = HBi-14,

which is the ith column of Y;_,. This completes the minimal
realization in the first canonical form.

If it is required to obtain a minimal realization in the second
canonical form, we may first use the preceding algorithm to obtain
a minimal realization in the first canonical form and then transform
it to the second canonical form. This transformation includes the
following steps: 1) Compute the elements bijp’s and di;’s from
the elements a;;p’s and c;;’s by use of the recursive formulas (11)
and (12). 2) Compute the matrix T. of (8) and then calculate the
new output matrix.

Finally if it is required, instead, that the pair (F’, H) is in a
canonical form, the algorithm described above can be still used, but
this time the rows of the Hankel matrix T(0, 2 —1) should be
used to calculate the canonical form required.

4. STOCHASTIC REALIZATION

In this section the minimal realization algorithm of the last
section and the gencralized companion form given by Luo and
Bullock®® will be combined to solve an realization problem for
stochastic linear constant systems. This method vields substantial
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savings in computation and leads to a formula which explicitly
describes the redundancy in the system noise covariance.
Consider a stochastic linear constant system described by the

difference equation

x(t+ 1) = Fe(d) -+ w(t)

y(¢) = Ha(t) (16)
where x(¢#) is a stationary random variable, w(#) is a Gaussian
white noise with zero mean, and y(#) is a statiopary random wvari-
able and has full rank, i.e., Ey(¢) /() is positive definite. Since
the system is stationary, the eigenvalues of F all lie inside the unit
circle. Define

Q = Ew(t) w'(?), M = Ex(¢) 2/(t)

Ci=Ey®)y'(t+4d) i=0,12,...

It is easily shown that the covariance function C; and the
covariance M satisfy the following equations

Cp= HF MBS =i, 40000 (17)
M = FMF’ + Q. (18)

The stochastic rtealization problem is this: Given the infinite
sequence of p» X » matrices Cy, Gy, ..., find a triple (F, H, Q) such
that the equations (17) and (18) hold. The algorithm which will
be given to identify the triple (F, H, Q) consists of two major
parts. First, the realization technique of the last section is employed
to obtain a minimal realization (F, G, H) such that the following

equation is satisfied
C: = HF' G i= 0,102, (19)

In computing (F, G, H), the pair (F’, H') is specified to be in the
second canonical forni. Comparing (17) and (19), we have
G = MH' (20)

The next step is to compute M using (20) and then to compute
Q using (18). Since H isin general not nonsingular, not all entries
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in M can be obtained by solving (20). It follows that it is impos-
sible to completely identify Q by (18). To what extent can Q be
identified? In the following the nonuniqueness in the identification
of Q is described.

A suitable approach for the identification of Q is to use the
generalized companion form®®», The generalized companion form is
a modification of Luenberger’s second canonical form. If (F’, H)
is in Luenberger’s second form, then by simply adding null state
variables and rearranging all the state variables, the pair (F, H)

can be transformed to the form

. By

P = P (21)
0 0...1B,
H=[0 0...D]

where I is the p X p identity matrix, B; is a p X » matrix with
entries b;ja’s, D is a p X p lower triangular matrix with entries
di;’s in the lower triangle, and v is the observability index of the
pair (F, H).

From now on, the pair (F, H) will be assumed in the gener-
alized companion form and every matrix is partitioned into #» X p

blocks. For example:

Gl Qll le e Ql.'/
G (—-_"2 Q . 921 Qaz Qz»
Gu Q»l Qvﬂ---Quy

where G; and Qu: are p X p matrices. Notice that the rows and
the columns of G and Q which correspond to the added null state
variables are zero.

With respect to the new equivalent system, MH’ is equal to the
last p columns of M multiplied by D', i.e.
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M,, D!

M"Jy D"I
MH! =1 ." (22)

M,. DI

In view of (20) and (22), we note that the last » columns of M
can be identified from the output covariance function C;, while the
rest can not.

Let M;; =0 if either ¢ or j is zero. Then (18) can be sim-
plified to

M;i; = Ma-nei-0 -+ Qi -+ Bi M-y
+M(i71)yB}+B;M”B} 2 d = Lo, e

By simple substitutions the entries of the last » columns of M

can be expressed in terms of themselves as

i i
M;, = _ZJ.Q(:‘+1—J')(»+17}J + jf_.'l {Bit1-1 M'e, - 150
= =

+ Ma-1» B;+1_j + Biri-i M, B;+1-3}
5 (23)

Since M,, is symmetric, M has np—p(p—1)/2 distinct elements
in the last p columns. Thus there are np—p(p—1)/2 independent
equations in (23). Rearranging the terms in (23) yields

£ i
2 Quei-nuw+-n =My — 3 {Biwa—; My, 5y,
P P (v—1)

+ Ma-5 B, 5+ Bivi-y M,y B, ;5]
f= 1kl (24)

Since every term on the right-hand side of (24) is known, the block
diagonal sums of @ on the left-hand side can be determined. It is
stressed here that these block diagonal sums of Q are the only
information about Q that can be obtained from the output covariance
function C;. In other words, two different Q’s may lead to the
same output covariance function C; if they have equal block dia-

gonal sums.
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5. CONCLUSION

In this paper the algorithm for minimal realization in canonical
forms and the solution of the covariance equations in the generalized
companion form have been combined to solve an realization prob-
lem for stochastic linear constant systems. This method involves
solving only simple algebraic equations and leads to a formula which
explicitly describes the redundancy in the system noise covariance.
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DETERMINATION OF THE SPHERICALLY
SYMMETRIC COMPONENTS OF POTASSIUM
ION-SMALL MOLECULE POTENTIALS

FrANK E. BUDENHOLZER, SVD

ABSTRACT

Incomplete total cross sections have been measured for K+
scattered by N, CO, CO,, CH,, C.H,, C; Hs, CF, and SF; in the
range Egy =2-100eV deg. Here E is the energy of the K+ beam
and @y the apparatus resolution angle., The data has been analysed
to obtain estimates of the spherically symmetric component of the
ion-molecule potential in the region of the potential well, Detailed
consideration has been given to the problem of inverting the data
in such a way as to take proper consideration of the anisotropies
present in these systems.

INTRODUCTION

The interaction of atomic ions and molecules is such that we
would expect the formation of “ion-cluster” molecules, M+ — X,
where M is an atomic ion and X the neutral ligand. Such ion
clusters have, in fact, been observed (most notably using mass
spectrometer techniques) and, as expected, they are formed via a
three body process,

M+t+X+X->M+t—-X+X (1

These clusters have a certain intrinsic interest as unique chem-
ical species. This is, however, overshadowed by their important
role in a broad range of chemical and biological systems. Eq. (1)
represents the key steps in the solvation of ions in water or non-
aqueous solvents.® Closely related to this is fhe important role
that cluster ions play in the transport of ions across membranes
from one solvent environment to another.® Finally the formation
of cluster ions has been found to be an important process in the
earth’s ionosphere.®®

Accurate ion-molecule potentials, particularly in the region of
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the potential well, are of critical importance if we are to understand
the nature of the bonding in these ion clusters. Among the various
ion-molecule potentials that could be studied those of the alkali
metal jons and small symmetric molecules are particularly interest-
ing, for these systems are amenable to both experimental and theore-
tical analysis.

The interaction energy between an atomic ion and an atom or
linear molecule can be described by the potential function V(R, ),
where R is the distance between the ion and the molecular center
of mass and 4y is the angle between the molecular axis and the
vector directed along R. In order to understand the source of these
interactions, the potential is often expressed as a sum of terms
where each term describes a particular aspect or asymptotic form
of the true potential.

Short range forces are those that determine the interaction
energy at internuclear distances where significant charge cloud
overlap can occur. These forces are repulsive and can often be
adequately described by a simple exponential term:

Vrap (R) = ae““‘. (Z)

Such a form completely neglects short range anisotropies.
However these anisotropic terms are expected to be small and our
results and those of other workers support this conclusion. If we
are concerned only with moderate and low energies, a simple inverse
power potential of the form

Vrap (R):CN/RN (3)

is satisfactory. This form is often mathematically more convenient
and proved adequate for our work.

Long range forces are primarily electrical in origin. They can
be conveniently considered under the headings, electrostatic forces,
induction or polarization forces and dispersion forces.

Electrostatic forces involve the interaction between the atomic
ion (considered as a point charge) and the permanent moments of
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the molecule. For an ion-linear molecule potential, the mosi: impor-
tant electrostatic terms arise from the ion-dipole and ion-quadrupole

interactions.®
Va®, ¥) = =52 Pieos ) + 5 Pycos ) e

Here e is the electronic charge, D and #, are the dipole and
quadrupole moments respectively, and P;(X) and P.,(X) are the
first and second Legendre polynomials. Terms involving moments
of higher order have not been included.

The induction or polarization energy corresponds to the inter-
action of the ionic charge and the multipole moments induced in the
molecule by the ion. For our purposes the most important terms are

given by®
V . 1 82 eaag
»(R, 11’)———2—'—ﬁ;{a+2axP2(cos1#)}—W. (5)
Here a is the average dipole polarizability and & the anisotropy in
the polarizability:

&= o (ay+2a) (6a)

£=(ay —ay)/(a, +2a.). (6b)

The terms a, and «. are defined as the dipole polarizabilities
parallel and perpendicular to the molecular axis. Note that in using
a it is important to include both the electronic and nuclear com-
ponents to the polarizability.®® The a, of Eq. (5) is the field
gradient quadrupole polarizability. Accurate values of @, are not
known for most small molecules. However Gislason and Rajan®
have developed a semi-empirical method of predicting a, from
known values of a.

The dispersion energy is of quantum mechanical origin. It can,
however, be visualized as an instantaneous dipole in one molecule
inducing instantaneous multipoles in the opposite atom or molecule.
For our purposes the only significant dispersion term is the so called
induced dipole-induced dipole term:™
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: Cass
Vaiss (R, ¥) = — —e™ {1+ £ Pa(cos ¥} . (7)
Casp can be calculated to sufficient accuracy for our work from
known values of the dipole polarizability.(®
The potential V(R, 4r) can be expressed exactly as a sum over
the complete set of Legendre polynomials:

V(R, ¥) = 5 Vi(R) Pr(cos ) . (8)

Comparison with the various potential terms just described, indicates
that the /=0 to /=2 terms are the most important. In what
follows it will often be convenient to use the coefficients of Eq. (8)
to indicate the various angularly dependent contributions to the total
potential.

Using the various potential terms described above, relatively
accurate potentials can be calculated for the long range ion-molecule
interactions. A few calculations have also been carried out for ion-
molecule systems in the region of the potential well. These include
ab initio calculations, as for example those of Staemmler® for the
Li+-CO and Li*-N. systems, and a recent “electron gas” calculation
by Kim and Gordon.® However such calculations are far from
routine and there is a need for empirically determined potentials in
this critical region of the potential well.

Among the methods of determining ion-molecule and ion-atom
potentials, molecular beam scattering experiments have been parti-
cularly fruitful. Both differential and incomplete total cross section
measurements have been carried out.™™ Since detectors normally
are unable to discriminate between various vibration-rotation states,
the experimentally determined cross sections are usually sums over
all final states.’®» This is the case for all of the work reported
here.

The deconvolution of scattering data to obtain interatomic and
intermolecular potentials has been the subject of much research.®®
With isotropic systems such as the alkali metal jon—rare gas systems,
direct inversion of the data is in principle possible. However, the
averaging involved in any beam experiment and the limited range
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of the potential that any one experiment samples usually prohibit
such a direct inversion. Rather a mathematical expression containing
variable parameters is selected. “Experimental” cross sections are
calculated from this potential and the parameters are then varied
until a “best fit” potential is obtained.®®

In the case of anisotropic systems the problem of inversion is
considerably more complicated. If no external fields are present, we
can begin with the assumption that all orientations of the scattering
partners are equally probable. This implies that in calculating cross
sections we must average over all molecular orientations.

In most theoretical calculations and inversion schemes a further
assumption is made that the orientation of the molecule remains
fixed during the time of the collision. If & defines the radius of
significant interaction and o is the relative velocity, then this
assumption is well justified when d/v is much smaller than the
rotational period of the molecule. This is usually the case for the
scattering of thermal atomic beams by diatomics and is clearly
justified in the case of higher energy ion-small molecule systems
such as those described in this report.

Initially it was usually assumed that for mildly anisotropic
molecular systems, the orientation averaged scattering would be
equivalent to scattering from a spherically averaged potential. In
the case of rapid molecular rotation this is clearly a good approxi-
mation. However, even when the assumption of fixed orientation
during the collision is made, the assumption is often justified. In
an early calculation for the He-N, system Sinanoglu®® compared
cross sections calculated from a pre-averaged potential with orienta-
tion averaged cross sections. He found a difference of about 42,
comparable with the uncertainty in most beam experiments. A later
calculation of Cross and Herschbach®® as well as subsequent trajec-
tory calculations®” confirmed this conclusion.

However, when one wishes to consider the details of the scat-
tering patterns, particularly in the area of the rainbow, such an
assumption may lead to serious problems. For example, Cross®®
showed that glory undulations in energy dependent total cross
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sections are quenched by molecular anisotropy. Budenholzer and
Gislason®® in a purely classical Monte-Carlo calculation of differen-
tial cross sections obtained results qualitatively similar to those of
Buck, Gesterman and Pauly in a semi-classical calculation.®*® When
mild P, and P, anisotropies are present the rainbow pattern is
quenched and in the case of P, anisotropy a structure possibly
indicating a second classical rainbow is observed.

A very recent paper compares accurate close coupling calcula-
tions with semi-classical orientation averaged cross sections and
semi-classical cross sections using a spherically averaged potential.
Both the close coupling results and the orientation averaged semi-
classical results show a considerable damping of the oscillations
found in the cross sections calculated using the pre-averaged poten-
tial.2D

The damping of oscillations is seen very clearly in the work of
Udseth, Giese and Gentry*® who measured differential cross sections
for the scattering of protons by Ar and various small diatomics.
The rainbow pattern is quite clear for the H+-Ar system, somewhat
damped in the case of H+-N,(|#,| = L5), very weak for CO(|#,]
=2.0, D= 0112) and completely absent from HCI(D = 1.1).

In the work that is reported here, we are attempting to obtain
the maximum amount of potential information from incomplete total
cross section data for the scattering of K+ ions from various small
molecules. Since our data is sensitive to the region of the potential
well, we would expect the contribution from the anisotropy to be
significant.

To describe the spherically symmetric contribution to the poten-
tial (V,), we have used a simple inverse power potential of the
form

Cx C, Ce (9)

Vo(R)m ok oo St o,

The R—* term corresponds to the ion-induced dipole term of Eq. (5)
and C, is set to its asymptotic value to guarantee proper behavior
of the potential at large R. The parameters N, Cy, and C; are
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then allowed to vary until an optimal fit to the data has been
obtained.

In the literature, the spherically symmetric potentials are most
often reported in terms of the position of zero potential energy
(R,), the position of the potential minimum (R,), and the depth
of the potential well (e). These parameters are, of course, uniquely
determined by Eq. (9).

In what follows a method to determine this spherically symme-
tric component to the ion-molecule potential is developed and the
results of our analysis for various K+*- small molecule systems are
presented.

EXPERIMENTAL PROCEDURE

The details of the experimental procedure have been described
elsewhere.®.2 Figure 1 shows schematically the principle compo-
nents of the apparatus. Briefly, the incomplete total cross section

Q is determined by measuring the attenuation of a K+ beam, of
LAB energy E, by a gas in a scattering chamber of length / at a
pressure p. The K+ beam is produced by surface ionization,
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Fig. 1. Scale drawing of the principle components of the scattering chamber.
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extracted, and focused through the scattering chamber onto a Fara-
day cup detector. The pressure of the scattering gas is measured
with a capacitance manometer. All the collimating holes are circular,
so the beam has cylindrical symmetry.

The cross section at each energy was determined from a modified

Beer’s law expression:
(nd)"*In{l/T,) = —Q + anl Q*. (10)

Here I, is the K+ intensity with no gas in the chamber; and »
is the number density of the gas which is directly related to the
pressure by the ideal gas law. The final term in Eq. (10) accounts
for multiple scattering of K+t ions in the scattering chamber. Both
Q and g are determined by a least squares fit to Eq. (10). Typically
seven data points were used in the fit. The uncertainty AQ in
each cross section was estimated from the quality of the fit. Values
of AQ averaged 62 of Q with low energy experiments having
larger uncertainties.

For each experiment the energy distribution of the ion beam
was determined using a retarding field energy analyser located in
front of the Faraday cup. The spread in heam energies was rela-
tively low, allowing the energy of the beam to be adequately
described by a single parameter, E.

For each experiment we also measured the intensity of the
unscattered beam as a function of the angular displacement of the
detector from the beam center. The ion beams were found to be
well described by a gaussian function, and for each energy a resolu-
tion angle, 0y, the half width half maximum (HWHM) of the
distribution, was determined.

THEORY

For svstems with spherically symmetric potentials, e.g. K+-Ar,
the measured incomplete total cross section will be given by,®»

g(E; 6;) = 2 fu"I(E, ) [1 — K(6; 6;)]sin8 d8 (11)

Here I(E, 8) is the differential cross section in laboratory (LAB)
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coordinates and K(#; f;) is the resolution function of the apparatus.
K(8, 6;) is simply the fraction of the ion beam which hits the
detector after being scattered through LAB angle #. (In what
follows E and & will refer to LAB coordinates and E:; and & to
center of mass, CM, coordinates.)

In an apparatus with cylindrical symmetry such as ours, this
K(8; 03) corresponds to the angular distribution of the unscattered
gas normalized to one at the maximum.®® Thus,

K(8; 6:) =exp[— (In2) (8 /6:)°]. (12)

In words Egq. (11) indicates that the cross section ¢ (which is
calculated cross section, corresponding to an actual experimental
cross section Q) is the integral of the differential cross section over
those angles where the particles miss the detector and are therefore
counted as scattered.

In order to determine the *hest fit” potential, Eq. (11) must be
transformed so that it is an explicit function of the potential. We
begin by considering the conservation of flux relationship from
elementary scattering theory,

2z I(E, 6)sinfdf =2rbdb. (13)

Here I(E, 8) is the differential cross section as previously defined
and b is the impact parameter (the distance of closest approach
between the scattering partners in the absence of a force). If Eq.
-(13) is substituted into Eq. (11) and appropriate changes are made
in the limits of integration, we obtain

a(E; 8,) =2z ﬁmb[l—K(ﬁ; 0,)1db (14)

where K(#; 0;) must now be expressed as a function of the impact
parameter & and the intermolecular potential V(R).

Smith® has derived an expression which allows us to express
the CM scattering angle (the angle between the initial and final
relative velocity vectors) as a function of the impact parameter and
the relative kinetic energy, E:e:

Eia ? = 7(8) + (Ere1) "2 71(0) + (Eear) 2 7a(d) + ... (15)
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(b), (b)), etc. can be computed from the potential V(R). For
inverse power potentials there exists a simple closed form solution.
Furthermore at the high energies and small angles considered in
this report only the first term in the expansion need be retained.(®®

All of the experimentally measured quantities are in LAB
coordinates. If we assume that the motion of the scattering gas is
negligible in comparison to that of the ion beam®® and make
approximations consistent with high energies and small angles, then
using the standard LAB to CM transformation,®” we obtain

Ezel — ME/ (M + m) (163-)
d=(M+m)o/M (16b)

Here M is the mass of the scattering particle and s the mass of
the ion. If this result is combined with Eq. (15), we obtain our
basic working equation,

Eﬂ = Eral ?9 = T(b) . (17)

We will refer to the product Ef as the reduced deflection angle
and to =(b) as the (reduced) deflection function. Eq. (17) states
in words that the product of the LAB energy and scattering angle
is a unique function of the impact parameter. The importance of
this relation lies in the fact thal, for a given system, it allows us to
analyse data taken at different energies and with different apparatus
resolution angles in terms of a single deflection function.

Figure 2 shows a typical deflection function. For such a func-
tion 7(b) is posilive at small b, goes to zero at bg, the glory
impact parameter, and reaches a minimum value of —rz, at &,, the
rainbow impact parameter. The function then goes smoothly to zero
as b goes to infinity. Since a molecular beam apparatus has no
way to distinguish positive from negative deflections, each 7, = E#,
will correspond to one or three impact parameters: one if E#, is
grealer than ¢, and three if Ef, is less that r,.

The calculation of the deflection angle is carried out in a space-
fixed coordinate system with the z axis chosen parallel to the initial
relative velocity and the y axis defined by the initial orbital angular
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Fig. 2. The deflection function, r(b), for the spherically symmetric

K+-Ar system.

momentum. In the case of spherically symmetric potentials, scatter-
ing will take place entirely in the x —z plane. However with the
introduction of anisotropy, there is also an out-of-plane scattering
component. The in-plane reduced deflection angle is given by

Tz = Era Ox (18a)
where #, is the CM deflection angle in the x# — z plane. Similarly
the out-of-plane component is given by

Ty =Erel ?95!- (18b)
Simple geometric considerations indicate that, for small angles

(Bead)? = 2 =72 71 (18c)

The deflection funcions, z.(b) and r,(b), are calculated using

classical perturbation scattering theory (CPST).*%2 It is assumed
that the molecule does not rotate on the time scale of the collision
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and the deflection angle is then calculated as a perturbation on a
straight line trajectory. Ina previous paper® we have shown that
this theory works well for spherically symmetric potentials in the
small angle region sampled by our experiments. Gentry®® reached
a similar conclusion for the ion-dipole potential.

Using CPST we can write an analytical expression for the
deflection function corresponding to the potential,

VR, ¥) = g [L+ A1 = 4 [1+ ()] — 5&
= %]2“ Pi(cos ) + —’%i Py(cos ) + f5. (19)

Here f1 and f: represent the anisotropy in the repulsive and
attractive terms and are given by

fi= A, Pi(cos ) + B, Pa{cos ) (20a)
f: = AqPi(cosyr) + B, Py(cos ), (20h)

where A,, B,, A;, and B, are variable parameters to express the
degree of anisotropy. The f; term is simply a damping term to
remove the dipole and quadrupole contribufions at small R. The
other variables have all been previous|y defined (see Eg. (9)). The
precise form of the damping term and the corresponding deflection
function are given in the appendix.

If the angles § and 7 are used to define the orientation of the
molecule with reference to the z axis of the space fixed coordinate
system, then Eq. (14) can be extended to explicitly include the
averaging over the various orientations of the molecule:

ate) =5 [ [7ap [ arbsingil
—exp[— (In2) (z(d, 1, B) / 7)1} (21)

Here ¢, is the resolution angle of the apparatus, rx = Ef;, and
(b, v, B) is given by Eqs. (A3) and (A5b).

The integral of Eq. (21) can easily be solved on a computer
using Gaussian quadrature routines. With this result we are in a
position to calculate cross sections for comparison with experimental
data.
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However, before presenting our results, a few words should be
said about the classical nature of our calculations. It is well known
that at high energies, far outside the rainbow region, quantal effects
can be ignored. That this should be possible in the rainbow region
is somewhat surprising. A consideration of Eq. (11), however, gives
a qualitative indication of why this is possible. Eq. (11) indicates
that the calculated cross section represents both an integration over
the differential cross section and an averaging over the resolution
function. In a previous paper we present a series of calculations
for the K+-Ar system which indicate that after this averaging has
been carried out, the quantal and classical cross sections never
differ by more than about 1%.

DATA ANALYSIS AND RESULTS

To gain a better understanding of the effect of anisotropies on
incomplete total cross sections, trial data was first generated using
Eq. (21) and the potential of Eq. (19). In these trial calculations
N=38, Cg=2302eVA8 C,=118eVA* and C, was set to zero.
These terms, chosen to approximate the K+-Ar potential, were
kept constant and cross sections were calculated using various values
for the dipole, quadrupole and anisotropy coefficients (A,, B,, Ag,
Ba).

Figures 3 and 4 display some of the trial data as a function of
the resolution angle Ef,. In both figures cross sections for the
spherically symmetric potential are indicated by solid lines. Dashed
lines indicate cross sections calculated with anisotropy coefficients
of 1.0 in Fig. 3 and 0.5 in Fig. 4; while the dash-dot lines indicate
all four coefficients to be zero.

The upper curve of Fig. 3 demonstrates that with a dipole of
1.0 Debye (for HCl, D =111 Debye), the ion-dipole term of the
potential dominates the cross section at low energies and at moderate
energies well beyond the region of the rainbow angle. However, at
high energies (rx > 400eV deg.), the curves for the dipole moment of
1.0 D and the spherically symmetric case merge together smoothly.
At this point the repulsive term in R-% is completely dom'inating.
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Fig. 3. Incomplete total cross sections for ion-dipole scattering,

It is also important to note that the effect of the anisotropy coeffi-
cients is magnified, particularly around the rainbow angle, when a
strong dipole is present. Inspection of Eq. (21) indicates that the
magnitude of the cross section is a function of 7% We therefore
presume that this enhancement is due to the cross products of the
various P, terms. In contrast to this the lower curve of Fig. 3
indicates the relatively mild effect of the anisotropy coefficients
when no dipole is present.

In Fig. 4 similar but less dramatic effects are seen when a large
quadrupole is present. For a moderate quadrupole of 2.0 Quad
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(10-% esu cm?) (the quadrupole moment of CO is 2.0 Quad), the
quadrupole dominates at low energies only, though its effects are
present well past the rainbow region.

This trial data was first fit to a potential of the form of Eq. (9).
The spherically symmetric potential for each set of trial data is
the same, and our goal was to see if a naive analysis of the data,
completely ignoring anisotropic potential terms, would reproduce
the spherically symmetric potential. We found that if no permanent
dipole or quadrupole terms are present, moderate anisotropies could
be neglected. Thus, for example, when we determined the best fit
spherically symmetric potential for trial cross sections with the
anisotropy coefficients all set to unity and the permanent molecular
moments all set to zero, the rainbow angle, 7,, and the well depth,
e, (the most sensitive of the potential parameters) differed from the
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Fig. 4. Incomplete total cross sections for ion-quadrupole scattering.
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exact spherically symmetric values by only about 72. This should
be compared with an average experimental error of about 8%.
However, we also found that even small dipole and quadrupole
terms could not be neglected. Thus when we fit trial cross sections
calculated with a quadrupole of only 2.0 Quads, and the anisotropy
coefficients all zero, the resulting rainbow angle and well depth
differed from the spherically symmetric value by more than 35%.
On the basis of these results, and on inspection of the literature
values for the anisotropies in the polarizability of the molecules
under study (see Table 1), we concluded that the ion-molecule poten-
tials could be adequately described by potential functions which
included only the anisotropy arising from the permanent dipole and
quadrupole, and that all other anisotropies could be safely neglected.

Table 1. Summary of the Long Range Potential Parameters
for the Molecules Under Study®

T
Molecule @ ay Caisp i Cs | « leg] D
| |
N, 1.76 2.02 29.6 44.1 0.131 1.5 | 0
CcO 1.97 2.39 31.9 49.1 0.167 2.0 0.112
CO; 291 4,26 47.4 78.1 0.264 4.4
CH, 2.59 3.58 41.9 67.7 0 0 0
C. H, 4.26 7.50 68.1 122.1 0.158 3.2 0
Cy, Hg 447 8.06 75.6 133.6 0.113 3.0 0
CF, 3.86 6.48 47.2 93.9 0 0 0
SF, 6.55 14.21 46.9 149.2 0 0 0

% o is the mean dipole polarizability and is given in units of A% It is
taken from Ref. 34. a4 is the quadrupole polarizability in units of As
and is calculated from the dipole polarizability using the method
described by Gislason and Rajan (Ref. 4). Caisp is the dispersion term
and is in units of eV AS. It is calculated using the Slater-Kirkwood
approximation (Ref. 6, p. 252). Cg has units of eV As and is the sum
of the dispersion and quadrupole polarizability terms. « 1is the aniso-
tropy in the polarizability taken from Ref. 6. (For C;H; and C;H; «
was calculated from the data of Ref. 34) |[#4]| is the quadrupole moment
in Quads (10~%* esu-cm?®) and was determined from our low energy data
(see Ref, 31). D is the dipole moment in Debyes; the values are from

Ref. 6.
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Thus our experimental cross sections were analysed using a poten-
tial of the form of Eq. (19) with fi=/f. = 0. Values for |#,| were
taken from a previous analysis of our low energy data,®" values of
D and C, were found in the literature. The parameters N, Cy,
and C; were allowed to vary until the best fit potential had been
obtained.

The standard procedure for determining the best fit potential is
to begin with a set of estimated values for the variable parameters,
calculate the cross section for each data point, ¢(rg);, and then
compare these results with the actual experimental results, Q;. The
quality of the fit is measured by the parameter %,

v = 5 L,IQ — aled)i 1/ AQ} (22)

where N is the number of data points for a particular ion-molecule
system (in our case 36 for each gas) and AQ is the experimental
uncertainty. The other variables have all been previously defined.
One or more of the fitting parameters are then systematically varied
and for each change a new set of g(ry); are calculated and yx is
computed. This procedure is continued until ¥ has been minimized.

In principle the complete integration of Eq. (21) over both the
impact parameter and the orientation angles could be carried out for
each set of trial variables. However this proved to be prohibitively
expensive, and a more economical procedure was developed.

Using the initial estimated values for Cy, N, and Cs; and the
literature values for D, #,, and C,, the complete integral of Eq.
(21), g*(zg);, is determined for each data point. A second cross
section, g*(rg);, is then calculated using only the spherically sym-
metric part of the potential. Using these a “reduced” experimental
cross section, Q{?, is then calculated from the experimental cross

section Q.
QP = Qs — g¥(ta)s + a* (22 (23)

This reduced cross section is simply the experimental cross section
with the dipole and quadrupole contributions removed.
These reduced cross sections are then fit to the best spherically
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symmetric 4 —6 — N potential (Eq. (9)). These best fit parameters
are then used to recalculate g* and g¢* and a new set of reduced
cross sections is obtained. This second set of reduced cross sections
is again fit to the best 4 —6 — N potential. The process is continued
until the optimal fit is obtained. In most of our work three itera-
tions were carried oul; the potential parameters were successively
varied by increments of 524, 5%, and 125.

To determine the conditions under which this approach would
be adequate to determine V,, we first fit our trial data using this
procedure. We found that when there was significanlt anisotropy
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Fig. 5. Experimental (circles) and “best fit” total cross sections for
the systems indicated.
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(A,, B,, As, B, >=05) coupled with a moderate permanent dipole
(D=1) or a substantial quadrupole moment (|#.| =4), we were
unable to obtain agreement in the well depth or rainbow angle to
better than about 352. This is the result of the coupling of the
small anisotropies and the permanent multipole terms, as already
discussed in the context of Figs: 3 and 4. This effect, resulting
from the products of the various P; and P, terms is not removed
by the procedure of Eq. (23).

However in the case of moderate anisotropies, such as those



68 Ion-Molecule Potentials

occuring in the systems under study, the procedure is quite ade-
quate. We would expect the rainbow angles and well depths to be
good to within 102 and the other parameters to be even better.
The only exception to this is CO;. With a quadrupole of 4.4 Quads
and an anisolropy in the dipole polarizability of 0.264 (equivalent to
B. = 0.528), the trial calculations indicate a possible error in the
well depth and rainbow angle of up to 25%.

For N;, CO, and CO, high energy experiments have been
carried out in other laboratories,®® and analysed using Eq. (2). For
each of these gases four high energy points were synthesized and
included in our analysis.®® An error of 82 was assumed for the
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Fig. 7. Spherically symmetric component of the K+-CO and K+-N;
potentials. Comparison with high energy results from other
laboratories.
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N; and CO data and 102 for the CO. data.

Figures 5 and 6 show the experimental data plotted as a func-
tion of the resolution angle E@;. The synthesized high energy cross
sections are also shown where appropriate. The solid lines repre-
sent the calculated cross sections, g¢*(rg);, Which best fit the
experimental data. Potential curves, V, for the potassium ion-
CO, N;, and CO, systems are shown in Figs. 7 and 8. These curves
represent the polentials used in the calculation of the “best fit” cross
sections of the previous figures. The high energy results from
other laboratories are also included for comparison.
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Tables 2 and 3 summarize the results of our analysis; potential
parameters for the symmetric part of the potassium ion—small mole-
cule potentials. Table 2 also indicates the range of R over which
the wvarious potentials are valid. For CO, N;, and CO, the %1
potential parameters were obtained using both our data and the
synthesized high energy cross sections; the #2 potential was obtained
using data from our laboratory only. Extrapolating from earlier

Table 2. Best N-6-4 Potential Parameters for the Spherically
Symmetric Part of the Potassium Jon-Small
Molecule Potential?

Potential ‘ N o ¢ l G
N #1 9€0 | 6.582E3 73.24 © 1267
N; #2 1032 | 1.203E4 56.89 12.67
CO #1 9.40 5.974E3 79.35 14.18
CO #2 9.50 6.569E3 77.89 14.18
CO, #1 8.80 7.535E3 187.73 20.95
CO; #2 9.50 7.561E3 187.73 20.95
CH, 15.04 1.050E6 0.42 18.65
C.H, 12.36 3.590E5 66.37 30.67
C.H, 1111 1.528E5 11947 32.18
CF, 19.38 1.062E9 7.41 27.79
SF, 20.0% 1.489E10 77.98 47.16

4 The potential variables are defined by Eq. (9). The units of C, Cs,
and Cy are respectively eV At eV A% and eV A¥. The #1 potentiél
was determined using both our data and cross sections synthesized from
the results of high energy experiments. The %2 potential was determin-
ed using only our data. The range of validity for these potentials
(excluding high energy points from other sources) is:

Ne, 2.51-5.78 A CO 251-6.04 A
CO;, 2.68-7.03 A CH, 253-639 A
C,H,, 2.86-7.08 A C.H; 2.96-7.20 A
CF,, 3.03-7.00 A SFy 3.26-5.82 A

b In fitting the SF, data N took on unrealistically high values. For this
reason N was not allowed to vary beyond 20. The value of x obtained
with this restriction was only slightly higher than that obtained when
N was allowed to vary freely, - : =
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Table 3. Potential Parameters for the Spherically Symmetric
Part of the Potassium Ion-Small Molecule Potential.®

Gas e Ro Rn | (Eo), X
N. #1 0.096 2.76 320 | 964 0.81
N $2 0.101 2.75 3.17 10.18 0.76
Co #1 0.103 2.76 3.21 10.27 0.75
CO #2 0.104 2.76 3.21 10.37 071
CO, #1 0119 | 294 343 | 1179 0.79
Co, 42 0.119 2.94 3.43 i 11.80 0.80
CH, 0.161 2.69 304 | 1688 0.70
G H, 0.176 2.99 3.41 18.10 0.74
¢y H, 0.146 3.14 3.61 14.88 0.90
CF; 0.160 3.11 3.44 17.48 0.84
SF, 0218 3.37 3.72 24.16 0.67

&

The well depth & is given in eV, R, and R, locate the potential zero
and potential minimum in A. The reduced rainbow angle (Eg), is
given' in eV deg. x indicates the quality of fit and is defined by Eq.
22. The significance of the #1 and #2 potentials is indicated in Table 2
and in the text. Uncertainties are also given in the text.

work on K+-rare gas potentials,® we estimate the following uncer-
tainties: e 4 402; Ry, +6.5%; Rn,+10%; (Ef),, +50%. It should
be noted that these limits are wider than the errors in fitting the
trial data using the method of Eq. (23), with the exception of those
cases where a permanent dipole was involved.

DISCUSSION

A consideration of Figs. 3 and 4 indicates in a qualitative way
the effects of various anisotropic terms on the total cross section;
and also indicates the type and degree of information that can be
obtained from total cross section measurements such as those carried
out in our laboratory.

At high energies (r>»7g) the isotropic R-¥ term clearly
dominates the molecular scattering. Accurate calculation of short
range forces is difficult, and little detailed experimental or theore-
tical information is available. However, within the limits.of our
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model calculations, our work indicates that at high energies small
anisotropies will only mildly effect the total cross section. Hence
we would agree with previous researchers that in this region a
simple spherically symmetric function quite adequately represents
the true potential.

At low energies, ion-molecule scattering is strongly dominated
by the ion-dipole and ion-quadrupole terms. The fact that the
remaining significant terms (ion induced dipole, ion induced quad-
rupole, and induced dipole-induced dipole) are well known, has
allowed a determination of quadrupole moments from low energy
scattering data.®

In the region of intermediate energy around the rainbow, the
ion-molecule scattering is still strongly influenced by the presence
of permanent dipole and quadrupole moments. There also appears
to be some coupling between small P, and P, anisotropies with the
permanent moments of the molecule. The stronger these anisotropic
terms the more difficult it is to obtain detailed information on the
symmetric part of the potential in this region. As would be expected,
this result parallels the results found in differential cross section
experiments and calculations. As was briefly indicated in the intro-
duction, the presence of anisotropies tends to quench the rainbow
oscillations, thereby limiting the amount of information available
in such experiments.

When no permanent electrostatic moments are present, our
results indicate that other small anisotropies—for example the
anisotropy in the dipole polarizability, —are relatively insignificant
in relation to the averaging and experimental uncertainty inherent in
total cross section measurements. This would support the claim
that in atom-molecule scattering a pre-averaged potential is usually
adequate to interpret the scattering data. This, of course, also
implies that it will be quite difficult to deconvolute such scattering
data in such a way as to obtain detailed information on small poten-
tial anisotropies.

In the case of ion-molecule systems, ion-dipole and ion-quadrupole
terms are usually present and these terms must be taken into
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account if an accurate determination of the spherically symmetric
potential is to be made. We believe that the procedure outlined
above is quite satisfactory, given the normal degree of experimental
uncertainty. We further believe that our estimates of error in the
potential parameters are quite conservative and that the true poten-
tial parameters are well within these limits.

There are, at present, no other experimental or theoretical results
with which to compare our work. However, the good agreement
between potentials #1 and #2 for N, CO, and CO, in Tables 2
and 3 indicates the continuity of our results with the high energy
scattering results from other laboratories.

Figure 7 and the results presented in the tables indicate near
agreement between the N; and CO spherically symmetric potentials.
This is as expected for the two ioselectronic species. The agreement
between the Cg; coefficients of Table 2 and the accepted values listed
in Table 1 secems somewhat less than satisfactory. However, the
experimentally determined potential must be considered as a single
flexible function. To expect one parameter of a three parameter fit
to closely match its asymptotic value is unrealistic.

In summary, incomplete total cross sections have been measured
for potassium ions scattered by various small molecules and the data
inverted to obtain the spherically symmetric component of the ion-
molecule potential. Detailed consideration has been given to the
problem of inverting the data in such a way as to take proper
consideration of the anisotropies present in these systems.

ACENOWLEDGEMENTS

The work presenfed here was carried out under the direction
of Eric A. Gislason at the University of Illinois, Chicago Circle.
In the laboratory and preliminary data analysis, the author worked
closely with Andrew Jorgensen. Their assistance is gratefully
acknowledged.



74 Ton-Molecule Potentials

APPENDIX

Calculation of the Deflection Function

Trial data were generated using a modification of the potential
of Eq. (19).

V(R, ¥) = <& (1 A, Pi(cos ¥) + B, Pa(cos ¥}

Pi(cosfr) -~ B, Pa(cos )}

= (% e B)Pl(COS\[")

+ (R’f + Rs )Pz(COS‘\[I‘) (A1)

The C;, and S; terms damp the dipole and quadrupole at small R
and are given by

Ci=wDR? (A2a)

S7 = 6’19.1 R;. (AZb)

The deflection function can be calculated using the formulas of Ref.
(29).

s = E#;
= Cs 35m
= 5 35 + - 5 A,sinfBcos7
_ 3= . o ni o
512 B,(8 — 21 sin®fA cos?r — 3 cos B)]
[————2Aas1n3cosr
+~%- (4 — 9sin® § cos*T — 3cos* B) |
32 B.
15z G _ €D
+ 16 B 52 sinffcosT

-+ 453— sin? B cos (27)

—35 b" [144 sin® 8 cos®T + 24 cos? 8 — 56] (A3a)
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Ty = E ﬂy
C 16 - : 105
= b; [ A, sinfsiny — 256” B, sin? B sin 7 cos T]

a. mf- I:—g— A, sinfBsinr 4+ —1% Ba sin® B sint cos T:|

o 32 C7 + bz]smﬁsm?‘

— 22 sin® B sin (21)

+ g5 5 [sin* Bsin7 cos 7] (A3b)
=i (A3c)

The C; and C; coefficients are given in the body of the paper.
Care must be taken that they are in the same angular units as the
resolution angles, .

For the actual fitting of experimental data a more simple form
of the potential was used

VR, ¥ = gx — £t — S0 _ D pcosy
+ €28 Pulcos ) . (A4)

The deflection function is given by
re= GL/ DY —C'/b‘*—C,;/b6
+ { B schosT
ev
b

b,
]

7 sin%fB cos (27)} F(b) (Aba)

ey = {€2 sin@siny — C5% sin® B sin (21)) £ () . (A5b)

For the inverse power terms, the primed quantities are related to
the potential terms as follows,

V(R) =Cy/R¥

(@) = o = Sove IEIED) (A6)
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where I' indicates the gama function. The damping term is given

by

flby=0 0<b=<1bg
f(b) =1—exp[— (b/be)?]. be<b<co

Here, bg is the impact parameter where 7, = 0 for the spherically
symmetric component of the deflection function.

DESCRIPTION OF FIGURES

Fig. 1.

Fig. 2.

Fig. 3.

Scale drawing of the scattering chamber region showing the
position of the ion source, the scattering cell, and the Fara-
day cup detector. The exit aperture of the source, the
entrance and exit apertures of the scattering cell and the
entrance aperture of the detector are each circular with 0.1
cm diameters. All dimensions are given in cm. The center
of the vacuum chamber is located inside the scattering cell
where the arrows meet. The effective length of the scatter-
ing cell, [, is 4.063 cm.

The deflection function, (&), for the spherically symmetric
K+-Ar system. Here b, is the rainbow impact parameter
and ¢, the (reduced) rainbow angle. The dashed line repre-
sents the absolute value of the deflection function. The
impact parameters b, b;, and b; give scattering at the
reduced deflection angle r = 7, If we neglect the averaging
over the deflection function, the corresponding incomplete
total cross section would simply be g, = a(b? — b} -+ b% ).

The incomplete total cross section, q(ry), plotted as a func-
fion of the resolution angle, rx. The cross sections were
calculated using Eq. (21) and the potential of Eq. (19). The
solid lines represent the spherically symmetric case. The
dot-dash curve describes the cross section for D = 1.0 Debye
and the anisotropy coeflicients (A,, B,, As, Bs) equal to
zero. In the dashed curves the anisotropy coefficients equal
1.0. In the upper curve this anisotropy is coupled with a
dipole of 1.0 Debye; in the lower curve the dipole is zero.
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Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.
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The rainbow angle for the spherically symmetric case is 14.0
eV deg. and is marked with an arrow on the abscissa.
Incomplete total cross sections calculated in the same manner
as those in Fig. 3. In the upper dot-dash curve the quad-
rupole moment is 4.0 Quads with anisotropy coefficients of
zero. For the lower dot-dash curve the quadrupole is 2.0
Quads and the anisotropy coefficients are also zero. The
dashed curve represents cross sections calculated with a
quadrupole moment of 4.0 Quads and anisotropy coefficients
of 0.5. Note that in this case there is a slight diminishment
of the cross sections. As in Fig. 3 the spherically symmetric
case is represented by the solid line.

Total cross sections in A? plotted as a function of the
resolution angle, Ef; = r;, for the potassium ion-small mole-
cule systems indicated. The experimental data are indicated
by circles. The solid lines indicate the calculated cross
sections, g*(ry), that best fit our data. The triangles are
the high energy cross sections synthesized from the poten-
tials of other workers. (see Ref. 32 and 33.)

Experimental and calculated cross sections, as in Fig. 5.
Note that CH,, SF,, and CF, are spherically symmetric and
therefore could be analysed using only the potential of Eq.
9).

Potential curves describing the spherically symmetric part
of the potential, V,, for the K+-N; and K+-CO systems.
The potentials are derived from our data plus the four
synthesized high energy cross sections. For most of the
region inside the potential minimum, the two curves are
indistinguishable on the scale of the graph. Shown also are
the high energy results of other workers: A, CO and N,
results of Kita, Inouye, and Noda (Ref. 32(a)); B, N* and
CO results of Van Dop, Boerboom, and Los (Ref. 32(b));
C, N; results of Amdur and co-workers (Ref. 32(c)); D CO
results of Amdur and co-workers (Ref. 32(c)); notice the
change in energy scale at 0.01 eV.
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Fig. 8. Potential curve describing the spherically symmetric part of

(1)
(2)

(3)
(4)

(5)
(6)

(9)

(10)

(11)
(12)

113)
(14)

the potential for the K+-CO; system. The notation is as
in Fig. 7. The dash-dot curve is the potential derived by
Amdur and co-workers (Ref. 32(c)) in high energy beam
experiments.
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When any mortal (even the most odd)

Can justify the ways of man to God,

I’ll think it strange that normal mortals can
Not justify the ways of God to man.

E.E. CUMMINGS
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PYRROLYSIS AND PARTIAL OXIDATION
OF BENZENE*

YunG-NAN CHEN

ABSTRACT

The pyrrolysis of the mixture of benzene and steam, with or
without oxygen over active carbon, aluminum oxide, silica gel, nickel
aluminum alloy powder, platinum, vanadium pentoxide and copper
has been studied.

In the absence of oxygen, biphenyl was isolated as the sole
reaction product. In the presence of oxygen, biphenyl was similarly
obtained with two exceptions: over vanadium pentoxide, the major
product is p-benzoquinone and over copper, the major product is
phenol.

INTRODUCTION

Phenol, an important industrial organic chemical, is obtained
commercially from coal tar and by synthetic methods™ like the
sulfonation process, the Raschig process, the Dow toluene process
and the Cumene process.

Most industrial synthetic methods for the production of phenol
employ benzene as the starting material and require several expen-
sive synthetic steps. A one-step change of benzene into phenol
would lower the cost of commercial phenol. Recently, there have
been many advances in this area of research.®*-9
~ We have found that benzene may by transformed directly into
phenol by the following methods:

(A) Hydrolysis of benzene in the presence of some catalyst,
and under suitable conditions.

cat.

'+C5H5OH+H2, (1)

CeHs + H. O

(B) Hydrolysis of benzene in the presence of oxygen and some

catalyst.

* This work was supported by The Chinese Petroleum Corporation.
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(C) Partial oxidation of benzene in the presence of some cata-

lyst.
cat.
2C6H6+027r—)2C6H50H (2)

We chose catalysts that are commonly used in petroleum chem-
istry, including active carbon, aluminum oxide, nickel-aluminum
alloy powder, silica gel, platinum, vanadium pentoxide and copper
and studied their activity to catalize the methods (A), (B), (C).

EXPERIMENT

A. Instruments:
(1) Oven: Heraeus Macrocombustion Furnace Type KR 1700.
(2) Thermometer: Heraeus TAK Bestell Nr. 36512-060 Pt, Rh-Pt
°~1600°C.
(3) Reactor: #304 stainless pipe 7/8” O.D.
(4) Gas Chromatograph: Hewlett Packard 5700 with F.1.D.
(5) I.R. Spectrometer: Unicam Sp 1100.

B. Illustrative procedure:

100 ml of benzene was vaporized (0.35ml/min) and mixed with
steam (C¢Hg: H,O = 1:1.5). This mixture is passed into the pre-
heated column at 360°C (200 mm in length) and then proceeds through
the reactor at a temperature of 400°C (350 mm in length). The tem-
peratures in each table are the temperatures of the reactor.

The products were collected through a water cooled condenser.
The water layer was tested with 5% Fe Cl; solution and the organic
layer was evaporated to free benzene. The residues were identified
by L R. spectrum, GLC analysis and physical data. The results are
listed in the tables. (Tables 1 to 17).

DISCUSSION

In the absence of either catalyst or oxygen (nitrogen atmosphere)
at temperatures ranging from 400° to 820°C no phenol is produced,
but at temperatures ranging from 580° to 820° biphenyl is isolated
(m. p. 69°-70°C). Its I.R. spectrum v max cm-': 3080, 1605, 1580, 1490.
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Table 1. Results of reactions without catalyst.

Carrier gas N, (60 ml/min).

83

Run No. Temp. (°C) Clieﬁ:‘?:ﬂ Fe Cly Test Products
1 400 90 =)
2 460 90 (=)
3 520 87 (=)
4 580 85 (—) “
5 640 82 (=) 0.1 gb
6 700 80 (—-) 0.5 gt
7 760 75 (=) 12"
8 820 65 (-) 35gh -+ Ce
9¢ 760 75 (—) 1.1 g?
10¢ 760 75 (=) 1.0 g?
111 760 70 (-) 1.0 gt
%: trace white solid.
b: biphenyl,
¢: carbon.
d: (CgHg) : (HoO) =1:0
e: (CeHg) : (H:0)=1:3
fi (CeHg) : (H;0) =1:5
Table 2. Results of reactions without catalyst.
Carrier gas: air, (160 ml/min).
Run No. Temp. (°C) ‘ éeﬁg‘é‘;]}a Fe Clz Test Products
1 400 90 (=)
2 460 90 (-)
3 520 89 (=) 2
4 580 85 (-) 0.1 g?
5 640 85 (—) 0.2 gb
6 760 75 (—) 3.5 gt
7 700 80 (=) 1.0 g?
8 760 70 (- 3.1 gb
9 820 65 (—) 6.0 g?

2: trace white solid.
b: biphenyl.
¢: carbon.
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Table 3. Results of reactions using 40 grams of 1% mm
active carbon as catalyst.

Carrier gas: Nz (160 ml/min).

s Recovery
Run No. Temp. (°C) Cy Hy (ml) Fe Clg Test Products
1 400 90 (=)
2 460 90 ()
3 520 88 (—) .
4 580 85 (=) 0.1 g®
5 640 82 (-) 0.5 gt
6 700 80 (=) 0.7 gb
7 760 75 (=) 1.5 gb
8 820 65 (—) 35gb -+ Ce

. trace white solid.
: biphenyl.
: carbon.

Table 4. Results of reactions using 40 grams of 14 mm
active carbon as catalyst.

Carrier gas: air (160 ml/min).

Run No. Temp. (°C) &eﬁsv(f;f’-) FeClg Test Products
1 400 90 (=)
2 460- 90 (—) a
3 520 85 (=3 =
4 580 85 (=) 0.1 g?
5 640 80 (—) 1.0 gt
6 700 75 (=) 2.2 gh
7 760 70 (-) 46 gt
8 820 60 (-) 6.2 gt + Ce

trace white solid.

b: biphenyl,

c

: carbon.
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Table 5. Results of reactions using 5g of 500 mesh Al; O
coating on 10g of pyrex glass wool as catalyst.
Carrier gas: Nz (160 ml/min).

~e

Run No. Temp. (°C) é{:ﬁ:\éiﬁ) Fe Cl; Test I Products

1 400 20 (=)

2 460 | 90 (-)

3 520 87 (=) i

4 580 85 (-) ¢

5 640 82 (-) 0.1 gt

6 700 30 (=) 05 gt

7 760 75 (=) L3 gb

@: trace white solid.
b, biphenyl

Table 6. Results of reactions using 5g of 500 mesh Al, O,
coating on 10g of pyrex glass wool as catalyst.
Carrier gas: air (160 ml/min).

Run No. | Temp. (°C) g*;egg‘g?;;g Fe Cl; Test Products

1k 400 90 (=)

2 460 90 () s

3 520 88 | =) “

4 580 85 (-) 0.1 g?

5 640 82 (-) 0.3 gt

6 700 80 (—) 1.0 gt

7 760 75 (-) 34 gt

8 760 70 (—) 36 gt

4: trace white solid.
b; biphenyl.
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Table 7. Results of reactions using 5g of silica gel coating
on 10g of pyrex glass wool as catalyst.
Carrier gas: Np (160 ml/min).

Run No. Temp. (°C) &eﬁs‘ziﬂ Fe Cly Test Products 1
1 400 90 () :
2 460 920 (=3
3 520 87 (=) &
4 580 85 (=) e
5 640 80 (=2 0.1g?
6 700 70 (=) 0.5 g+ Ce
7 760 160 (—) 1.0 gl -+ Ce

4: trace white solid.
b: biphenyl.
¢: carbon.

Table 8. Results of reactions using 5g of silica gel coating
on 10g of pyrex glass wool as catalyst.
Carrier gas: air (160 ml/min).

Run No. Temp. (°C) CRaeI?l:\ﬁlH) Fe Clg Test Products
1 400 90 e 6 .
2 460 0 | (-
3 520 85 =) &
4 580 85 (-) a
5 640 75 (=) 0.1g?
6 ; 700 60 =) 0.5 gb 4 Ce
7 _ i 700 60 (=) 05gb+Ce

%: trace white solid.
b: biphenyl.
¢: carbon.
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Table 9. Results of reactions using Ni-Al alloy powder
(5g, containing 48% of Ni) coating on 10g of pyrex
glass wool as catalyst. Carrier gas: N; (160 ml/min).

Run No. | Temp. (°C) &eﬁg‘z‘;{) Fe Cl Test Products
1 400 20 {i=]
2 460 90 =)
3 520 86 =) .
4 580 ; 84 (-) )
5 640 82 (—) 0.1 gt
6 700 80 (-) 0.5 g?
7 760 76 (—) 1.2e°
8 820 62 (=) 3.0 gt + C*

4: trace white solid.
b: biphenyl.
¢: carbon,

Table 10. Results of reactions using Ni-Al alloy powder
(5g, containing 482 of Ni) coating on 10g of pyrex
glass wool as catalyst. Carrier gas: air (160 ml/min).

Run No. Temp. (°C) ée[g:‘éx%’) Fe Cl; Test Products

1 400 20 (=)

2 460 9 (—)

3 520 88 (—) g

4 580 84 (=) 0.1 g?

5 640 84 (-) 0.3 gb

6 700 80 (-) 10 gt

7 760 73 (—) 2.8 g?

8 220 65 (—) 3.5 gt

4. trace white solid.
b: biphenyl,
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Table 11. Results of reactions using 5g of
2525 Pt-quartz as catalyst.

Carrier gas: N; (160 ml/min).

Run No. | Temp. () | SSEo%ert) | FeCly Test Products
1 400 90 (=)
2 460 90 (=)
3 520 90 (=) a
4 580 85 (=) 0.1 g?
5 640 85 (—) 0.2 g?
6 700 80 (=) 0.5 g?
7 760 60 (—) 15gb +C¢

@; trace white solid.
b: biphenyl.
¢: carbon.

Table 12. Results of reactions using 5g of
252 Pt-quartz as catalyst.

Carrier gas: air (160 ml/min).

Run No. | Temp. (°C) éeécﬁ"’(fﬂ) Fe Cl, Test Products
1 400 90 (=)
2 460 90 (-) 2
3 520 85 (-) 0.3 g?
4 580 85 (=) 0.5 g?
5 640 80 (-) 05 gt + C*
6 700 70 (—) 1.0 g +C*
7 760 60 (—) 15 g? -+ C°

%: trace white solid.
5. biphenyl.
¢: carbon.

=
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Table 13. Results of reactions using 5g of V; O, powder
coating on 10g of pyrex glass wool as catalyst.
Carrier gas: N; (160 ml/min).

89

Run No. | Temp. (*C) éeﬁz‘éf}m Fe Cl, Test Products
1 400 90 (=)
2 460 20 (—)
3 520 88 (=) G
4 580 85 (-) 4
5 640 80 (—) 0.1 g?
6 700 75 (—) 0.5 g% 4 C¢
7 760 70 (—) 12 g® + C*
4: trace solid.
b: biphenyl,
¢: carbon.

Table 14. Results of reactions using 5g of V;O; powder
coating on 10g of pyrex glass wool as catalyst.
Carrier gas: air (160 ml/min).

Run No. | Temp. ('C) | S§Yerd) | FeCly Test Products
1 400 90 (=)
2 460 90 (=) i
3 520 85 (=) 0.1 g?
4 580 80 (=) 1.0 g?
5 640 75 (-) 10gt+C-
6 700 65 (=) 05gb + Ce
7 760 55 (=) 0.5 g%+ C°
g4 580 75 (—) 1.0 gb
9¢ 580 75 (=) 1.5 g?
101 580 80 (=) 1.0 g?
. %: trace brown solid.
b: P-benzoquinone,
¢: carbon.
?: (CoHg): (H;0)=1:3
¢: (CgHy) : (H;OQ) =1:5
fir (CeHe) : (H;O) =1:0
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Table 15. Results of reaction using a copper pipe (7/8” 0OD).
Carrier gas: Ny (160 1nl/min).

Run No. | Temp. (°C) é“ﬁ:"gﬁ’) Fe Cl; Test Products
1 400 90 (=)
2 460 20 (-)
3 520 85 (=) g
4 580 80 (=) %
5 640 78 (-) 0.5 gt
6 700 70 (-) 0.5 gb + C°¢
7 760 60 (-) 1.0 g? +C°

a

: trace solid.

b: biphenyl.

(4

. carbon.

Table 16. Results of reaction using a copper pipe (7/8”7 0D).
Carier gas: air (160 ml/min).

Run No. | Temp. (°C) CI:BI?I:VE%{) Fe Clg Test Products
1 400 90 ! (=)
2 460 90 (+) Trace brown liquid
3 520 80 (-+) 0.1g brown liquid
4 580 75 (+) 0.5g brown liquid®
5 640 70 (+) 1.0g brown liquid?
6 700 65 l (-+) 1.0g brown liquid? +C
7t 640 70 i (+) 1.0g brown liquid®
gt 640 68 (+) 1.0g brown liquidd

R o o 8

: (CeHg) : (H:0) =1:0
: (CsHg) : (H,0) =1:3
: brown liquid with 502 phenol tested by G.C.
: brown liquid with 702 phenol tested by G.C. (Chart 1).
: 5024 phenol tested by G.C.
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Table 17. Results of reaction using 5g of V;0;/KH; PO,
mixture coating on 10g of pyrex glass wool as
catalyst at the temperature of 580°C.

Carrier gas: air (160 ml/min).

| V. 0,/KH, PO, | Recovery Fe Cls
Run No. 2 ?g/g) 4 Cy Hy (mi) ’ Test Products
1 4:1 | 80 o 2 iE) 0.8g P2 trace br. lig.?
2 1:1 l 80 | ) 0.5z P% 0.2g br. lig.c
3 1:4 80 (+) Trace brown geld
4 0:1 20 (=) Trace white solid

4: P-benzoquinone.

b: Contains 1025 of phenol tested by G.C.

¢: Contains 502 of phenol tested by G.C. (Chart 2).
d: Contains trace of phenol tested hy G.C.

730, 700, and G.L.C. co-injection analysis is identical with the authen-
tic sample. (Biphenyl from E. Merck Darmstadt). The yield of
biphenyl increases with increasing temperature of the reactor. As
the temperature is increased up to 820°C, carbon begins to deposit
in the reactor. (Table 1).

In the presence of oxygen, at temperatures ranging from 400°-
820°C biphenyl is again isolated as the sole product. (Table 2).

Next we successively introduced active carbon, aluminum oxide,
silica gel, Ni-Al alloy powder, platinum and vanadium pentoxide into
the reactor as catalysts, and replaced the stainless steel reactor
pipe with a copper one to study the catalytic ability of copper.

In the presence of the catalysts, without oxygen, the only pro-
duct again is biphenyl (Tables 3, 5, 7, 9, 11, 13 and 15). Using air as
carrier gas and a temperature range of 400° to 820°C in the presence
of active carbon, aluminum oxide, silica gel, Ni-Al alloy platinum
the only product is biphenyl also. (Tables 4, 6, 8, 10 and 12). The
catalysts can not facilitate reaction (1) and except for vanadium
pentoxide and copper, they can also not facilitate reaction (2).

We suggest that at high temperatures benzene homolyzes to
form phenyl radicals and then undergoes coupling to form biphenyl.
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CGH5—>CEH5°+H' (3)
2C6H5'—")C5H5—C5H5 (4)

If phenyl radicals are present the following reaction steps may

produce phenol:

Ha 0 5 HO» o HY ' (5)

C¢ Hs+ + HO+» —> C4 H;OH (6)
or

CeHs» + H;0—> Cs H; OH + H- (7)

From table 1, we understand that reactions (6) and (7) do not occur,
and suggest that after formation of the phenyl radical three possible
reactions may follow:

(a) Recombination with H- to form benzene.

(b) Following reaction (4) coupling occurs to form biphenyl.

(¢) Reaction with water to form phenol through reactions (6)

or (7).

The thermal stability of water is very high. At 1027°C only 0.002662%
decomposes(™, and at a temperature range of 400° to 820° reaction
(5) can not occur to any extent. From the heat of reaction (3), (4)
and (7) (AH = 103 Kcal/mole, -100 Kcal/mole and 16 Kcal/mole re-
spectively)®, we can easily understand that reaction (4) and the
reverse of reaction (3) is more favored. If th‘ere is a HO- free
radical present, reaction (6) (AH = —110 Kcal/mole)® may be
favored, too. But the catalysts chosen fail to facilitate the reaction
(B).

In the presence of oxygen the yield of biphenyl increases. The
coupling of phenyl radicals is increased which shows that oxygen
reacts with H- from reaction (3) and increases the life time or
concentration of the phenyl radical. From the fact that in Tables 2,
4, 6, 8, 10 and 12 no phenol is produced, we understand that increas-
ing the life time or concentration of the phenyl radical does not
make it react with water to form phenol.

Over vanadium pentoxide and in the presence of oxygen we
can get a yellow solid identified to be p-benzoquinone (IR spectrum

P -
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vy max cm~!: 3080, 1080, 1600, 1318, 1090, 1075, 945, 900, 742 and
GLC co-injection analysis are identical with that of the authentic
sample. p-benzoquinone from E. Merk Darmstadt), with the best
yield at 580°C. The ferric chloride test shows no phenol present in
water and G.L.C. shows no phenol in the organic layer either.
However there is some biphenyl present (Table 14). Formation of
p-benzoquinone may occur by the following route:

(i) Vanadium pentoxide catalizes the reaction of the phenyl
radical oxidation directly into p-benzoquinone

(ii) The phenyl radical reacts with vanadium pentoxide to form
phenol or its derivatives and further oxidizes to form p-benzoquinone
before escaping from the surface of vanadium pentoxide.

v2 05 VgO; /7\
Ce Hy» — [C¢H; OH] =0=X | >=0 (9)
0 —

2

In order to understand the reaction through (i) and (ii), we tried
to increase the surface acidity of V.0; and to decrease its affinity
to phenol by mixing vanadium pentoxide with KH,;PO,. The prod-
ucts show that some phenol is produced, and we can be sure that
benzene in the presence of vanadium pentoxide oxidizes to phenol
or its derivatives and then further oxidizes to p-benzoquinone.
(Table 17).

In the copper pipe with air as carrier gas, having a reactor
temperature of 460°C, the ferric chloride test begins to show that
phenol produced (IR spectrum ymaxcm-!: 3200 (broad), 1605, 1520,
1485, 1240, 1080, 890, 830, 760, 700 and G.L.C. analysis identical with
authentic sample; phenol 9825 GR from E. Merk Darmstadt) gives
the best yield at 640°C (Table 16). G.L.C. shows that in addition
to phenol as the product, it contains little biphenyl and p-benzo-
quinone. (Chart 1). k

Comparing the G.L.C. analysis of products of Table (16) and
Table (17), (Chart 1 and Chart 2), we find that both of them seem
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Chart 1: G.L.C. analysis of
products of run No.
5, Table 16

Chart 2: G.L.C. analysis of products
of run No. 2, Table 17

P



7

Fu Jen Studies 95

to have the same components, such as phenol (peak A), p-benzo-
quinone (peak B) biphenyl (peak C) and two unidentified components
(peaks D and E). Therefore we suggest that the formation of phenol
over copper and over vanadium pentoxide may have a similar mech-
anism (intermediate).

We suggest that the formation of phenol and p-benzoquinone
over vanadium pentoxide occurs according to the following steps:

CoHsr + V2 05— (Cs H* -0~V 0,)

@

— C¢ H; OH + 2 VO, (10)

or H.
CoH,OH+V,0,— 0= >=0+V:0:+H0 (1)
V10, +2 V0, + 0,—> V0, (12)

A

The phenyl radical reacts with V,0; to form a phO-V bond
and then changes into phenol, most of which further oxidizes to
p-henzoquinone. The lower oxidation state of vanadium is regen-
erated as vanadium pentoxide by reaction with oxygen, and we
suggest that on the surface of the copper pipe there is a thin film of
cupric oxide which reacts with the phenyl radical to form cuprous
phenoxide and then is reduced to phenol and copper.

H-
Cy He+ + CuO —» (C¢ Hg O-Cu) —> C¢ Hy OH + Cu (13)
CEH50H+CuO—>O=<:>:O+Cu (14)
C 4 O — Gl (16)

A

In both cases we find that a phenyl radical can react both with
vanadium pentoxide and cupric oxide to form a phO-metal inter-
mediate which reacts with the same reactive species and that it
would produce the same products shown in charts 1 and 2, for com-
ponents of peaks D and E.

Further studies will be made to increase the yield of phenol
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and p-benzoquinone, to identify the components of peaks D and E
(Charts 1 and 2) and to understand the mechanism of phenol forma-
tion.
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