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THE CLOSED IDEALS OF SOME
DIRICHLET ALGEBRAS

CHIN-SHIEN HU

It is known that the boundary value algebra A, on the unit circle T is
a Dirichlet algebra on 7. Using singular maps ¢ on T, Browder and
Wermer constructed®? a class of Dirichlet subalgebras Aq(¢$) of A,. The
closed ideals of A,(¢) were characterized by Blumenthal®. In this paper,
we consider some properties of Ay(¢). In section 1, we give a class of
singular maps on T, and some examples of closed ideals of A,(¢) by the
result of Blumenthal. In section 2, we consider Mobius transformations g
which fix the unit circle T. We show that A,(g) contains only constant
functions, if g maps the interior of T' onto the exterior of T'; and A\(g) = 4,
if ¢ maps the interior of T onto itself. At last, we also consider the iso-
morphisms of A,(¢) induced by Mdbius transformation g.

1. MAIN THEOREM AND EXAMPLES

Let T be the unit circle |z|=1 in the complex plane and A4, the
algebra of all continuous functions on T which admit continuous extensions
to |z jr=ils holomorphic on |z| < 1. Then 4, is a Dirichlet algebra on
T. Let ¢ be a homeomorphism of T onto itself. We define

Af$) = {fE Ay fe¢ € Ao}
where (f¢) (1) = (f($)). Wecalla homeomorphism ¢ of T onto T a “singular

map” if it sends a subset of T of Lebesgue measure 0 onto one of Lebesgue
measure 27. Browder and Wermer™ have -proved the following theorem.

Theorem A. Let ¢ be a singular map on T. Then Ay¢) is a proper
Dirichlet subalgebra of A,.

Now we construct some examples of singular maps of T, which are
more general than that constructed by Leibowitz®®. Let I be the unit
interval [0, 1] and m the Lebesgue measure on I. Let ¢, be a monotone
increasing continuous function from I onto I, such that there exists a class

of open intervals of I:
$hri=1, 2, 3,4
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which satisfies the following conditions:
(i) ind;=@ for i=+j:

(ii) f}IL | =1, where |J;| is the length of J,:
i=1

(iii) ¢, |J; = constant for each i.
There are many such functions. For example, the Lebesgue singular func-
tion satisfies the above conditions. Put I, = [a,, b,] where I, =[O0, 1],
h=[0,3} Is=(%,13 L, =[0, 4} Iy =[%. 3} L=[%, 2] I, = [%,1]
etc, and let ¢,(f) = ¢, (7:”—__%) and ¢ -=§}1 g: Then ¢ is a strictly in-

creasing continuous function from I onto I such that ¢! = 0 almost every-
where.

By using the method of Leibowiiz, we get the following theorem:

Theorem 1. The function ¢ defined by @(e*it) = e*=is s a singular
map on T, where ¢ is any function constructed as above,

From now on, let ¢ be asingular map on 7. The closed ideals in the
Dirichlet algebra A,(4) can be characterized as following (Blumenthal‘®,
Theorem 1).

Theorem B. [/ is a closed ideal of Af¢) if and only if there exist
closed ideals J, K of A, such that l

=ifed@):fel, f-¢ = K;.

We write I=(),K), if I={feJ:f-ge K;. Now we give some
examples of closed ideals in A (¢).

Example 1. lLet o be a point in the unit disk {fz:]z|< 1}. Put
Jo={fe A, : fla) =0}. Then J, is a maximal closed ideal of A, Let
I, = {fe A($): fla) = 0}. Then I, = (J,, Ag)g is a closed ideal in A,(g).

In the case of & & T, we have another representation of I,.

Example 2. Let K, = {f e 4, : fl¢™Me)) = 0;. Then we have I, —
(Jar Ko}y = (Joy Ay)g for each |a| = 1.

From the above examples, we know that the above representation of
closed ideals in A/(#) is not unique,

Each non-zero closed ideal in A, has the form ¢@I(S), where I(S) is
the ideal of all functions in A, which vanish on §. § is a compact subset
of T with Lebesgue measure zero and ¢ is an inner function whose support
on the circle is containedin S. Let J — ¢J(S)) and K = ¢,[(S,). Then the
closed ideals in A,(¢) can also be written in the form:

.
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I=(J, K)g = ¢ud(S) N (22 0™") (I(S1) = $7).

2. MOBIUS TRANSFORMATIONS

Let g be a Mobius transformation that maps the unit circle T onto
itself. Then G is also a homeomorphism of T onto itself. For Ay (g) we
have two different cases.

Theorem 2. If g maps the exterior of T onto the interior of T, then
Ag) consists of only constant functions.

Proof. Suppose that f& A/(g), i.e. f€ A, and fog = A, Let f and
feog be their holomorphic extensions to the unit disk, respectively. We
define

A {f(g(z)) for |z|>1,
(2) = ¢ ~
Sfeg(z) for |zl< L.

Since A(z) = (fe g)(z) for | z | = 1, & is continuous on | z | = 1. Furthermore,
% is holomorphic for both |z |>1 and |z | < 1. By Cauchy’s Theorem, £
is holomorphic in the extended complex plane. Therefore % is a constant
function (Liouville’s Theorem), so f is constant on T. Hence A,(g) consists
of only constant functions.

From this theorem, we know that in general Ay (g) is not always a
Dirichlet algebra.

Theorem 3. If g maps the interior of T onto itself, then Ay g) = A,.

Proof. For each f& A, let f be its holomorphic extension to the unit
disk. We define

~

I(z) = (foq)(2) for |z|< L

On the unit circle T we have obviously A(z) = (fe g)(z). Therefore % is
the holomorphic extension of fog, i.e. fog & A, Hence A, = A/(g).
Corollary. A,(¢°g) = Af¢), where g is a Mobius transformation as
in Theorem 3, ¢ is a singular map of T.
Proof. fe Afpeg)—fe A, and feog-g < 4,
—fe A, and f-¢p = Ao g™t = A,
o f e Afd).
From now on, let g be a Mobius transformation as in Theorem 3, then

the mapping T,:f—f-g is an algebra automorphism of A, ( = Ay g)).
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Hence A, = A, g = A,(g). For the Dirichlet subalgebra A4,(¢) with respect
to a singular map ¢ we have:

Theorem 4. T, is an isomorphism of A,(¢) onto the Dirichlet algebra
Afg™" = ).

Proof. First we show that Ay(g)c g = A, (g™ o ¢):

he A()egoh=fog, fe A, and fod & A,
ohe A, and hogtogp = A4,
ohe Afg o ¢).

Since ¢ is singular and the Mobius transformation g~' maps sets of
measure zéro onto sets of measure zero, g~'-¢ is also singular. Thus
Ayg™ - ¢) is a Dirichlet subalgebra of A,. Therefore f— fo g is an iso-
morphism of Dirichlet algebra A,($) onto Dirichlet algebra 4,(g- ).

Corollary. Let I=(J, K); be a closed ideal of A(¢). Then Iog
(o g K)ng

Proof. Iog={feg:feJ and fo¢p = K}

={h:hogteJ and heg - = K}
=fh:heJog and hog™logp = K}

=({J-g, K),—lu¢-

is a closed ideal in A, (g~!- ¢).

Since Jog and K are closed ideals in A, (J-g, K)r‘w is a closed
ideal in A (g~ ¢).
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NOTE ON ORIENTABLE RULED SURFACES IN E?
YI1-CHING YEN

1. INTRODUCTION

In his 1965 paper, T.J. Willmore proved that for an orientable closed
surface M in E* with mean curvature H, its total square mean curvature

(or briefly called total mean curvature),
J' H2dM > 4.
M

Equality holds if and only if M is an Euclidean 2-sphere. Some resultst:*
have followed about the total mean curvatures of surfaces since then.

In this note we study the same problem on orientable ruled surfaces in
E’. We find that only conoids* have finite total mean curvatures, although
it is known that the total Gaussian curvatures of ruled surfaces are constants
for finite length of striction curves. We also get some other results subse-
quently. We shall prove the following:

Theorem 1. The conoid M is the only orientable ruled surface in E®
which has finite total mean curvature, and

Juraz & (n73):

where L is the arc length of the director curve and p is the distribution
parameter of M.

Theorem 2. Let u = constant be the generators and a family of asymp-
totic curves of a conoid. If an asymptotic curve, which is not a generator,
has a vector representation % (u, vy(z)), then the family of asymptotic

curves other than u = constant takes the form

X (4, v(@)+ Cy/| p8) ),

where p is the distribution parameter of the surface and C an arbitrary

constant.

* These special surfaces have vector representations .;c'(u, v):(J‘g(u) cosudu +

v Cos U, Jg(u) sinu du-v sin u, A(u)), and according to James-James, “Mathematical

Dictionary” we call them conoids.



6 Note on Orientable Ruled Surfaces in E®

Corollary 1. In a conoid, the distance of every generator cut by 2 asymp-
totic curves varies proportional to the square root of distribution parameter.
Corollary 2. In a conoid, the distances of every generator cut by the

asymptotic curves are in constant ratios.

2. PRELIMINARIES
Let an orientable noncylindrical ruled surface have the vector represen-
tation
X, v) = o(u) + v3(u), (D)
where o(u) is the striction curve and & the director curve such that
o/« §! =0, and [|6(u)|| = [|8'(w)|| = 1. Then u is the are length of & and
},=a’+v6", §v=6, 5c}><3c,,=(o”+v§’)x¢§'. (2)
Let o/ x § = — pd', then we have (o/, &/, #) = p, which is a function of u
and is called the distribution parameter.
},,,,=a"+116”, }kﬂ=6’! ;Cunr:a- (3)
the coefficients of the Ist and 2nd fundamental form, the area element and
the unit normal vector are obtained from (2) and (3) as

E =g eg +v° F=g'48 G=1,
o —pol fvdl x 8
SRRy - I 2 kst SR Al
EG — F? = p* 1 2, (P* + iz > (4)
1 -
L= O Foryn [ro*+p'v—p@! « 07)], m = *(pz:p,f:)*u?s n=0,

where r = (67, &7, 8).
Thus we have for the mean curvature H of the surface
Hp* + v®) + p'v + pa
H= — A (5)

where @ = o/« 4§ is a function of .

Proof of Theorem 1. It is known that for the cylindrical ruled surface,
its total mean curvature is infinity,

For a noncylindrical surface M, we take the parametrization such as (1),
then the distribution parameter p + 0. Let the arc length of the director
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curve be L.
If r=+0, then
= (r(p* + v*) + P’V + pa
JH’dM J‘f TA(PE + 0 P gy du = oo (6)
If r=0, then

(vt = f s 4(5; ”:7"2?3-,? dv du

£ p'* + 24"

&= _6— e du (7)
15

oL,

2 - 6L j 2 du

=1 f1a AR

-5 (o 5@*) : (8)

Equation (7) shows that J‘szM is constant.

Now we discuss what r = 0 means. Consider the position vector d(u)
drawn from origin O, then & forms a director cone on a unit sphere 3}
with center at 0. Since ||§/(®)] = 1, u is the arc length of the spherical
curve &, hence its curvature vector 87 £0. Also 88 = &« d” =0 shows
that & and 87 are perpendicular to ¢'. Thus r = (87, 8',8) =0 (i.e. 67,8, 6
are coplanar) implies that 87 = 18 with 10, and 4 = — 1 in this case.
Then & is on a plane passing through O, hence is a great circle of >
For brevity, we write

8(u) = (cos u, sin u, 0), (9)
then
8!'(u) = — sin u, cos u, 0O). (10)

Since ¢! « 8! = 0, o(u) can be expressed as
o’(u)-——(j g(u) cos udu, J g(10) sin u du, h(w)). (11)

Then p(u) = (o'(®), 8'(w), 6@)= —h'(u).

Thus, the ruled surface we obtain has an explicit form of (1) with d and
¢ as in (9) and (11). It has generators parallel to the xy-plane. It intersects
the z-axis axis and ¢. Hence, by definition, it is a conoid. Theorem 1 is

thus proved.
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Proof of Theorem 2, Applying Z, m, and #n in (4), we have for the DE.
of asymptotic curves of conoid

du((p'v + 2pf) du — 2pdv) = 0, (12)

where f=— o'« § /2, and is equal to — o'/« /2 when r=0. Therefore
we have a family of asymptotic curves u = constant and a family of curves
having the DE.

d !
= 5=t (13)

f and p are functions of #. Then
o=y 0@ ([ 1@ )/ THDT dut-C) = @) + &/ TH@DT. (1)

Now an asymptotic curve x(x, vo(u)) with
vo(u) = A(u) + Cop/ | p(u) [ (15)

is obtained by assigning a constant value C, to C in (14).
Then the other asymptotic curves other than u — constant take the form

X(#, v(u)) with
2@ = 2w + &/ Tp@) | = vw) + C/ Tp@ |, (16)
where C = C — C, is an arbitary constant. g.e.d.
Proof of Corollary 1. Let the two asymptotic curves be x(u, vy(#)) with
Us() = 05W) + Coo/ | (W) |, k =i, j. Then
i) — vW) = (Ci — Cl/ Tp(w) | .

Since v, are the directed distances of generators 1 = constant from the stric-
tion curve, the distance D;j(u) on a generator cut by two asymptotic curves

X, vi(®)), k = i, j, has the expression
Dijw) = | C; — C; |/ | p(u) | . (17

Now fixed 7, j and change #, then the distances of the generators cut by

the two asymptotic curves are proportional to /| p(u)].
For the proof of Corollary 2, we take a constant value for # and change
the numbers of i, j, then the distances D;; are proportional to the constants
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| C;—C;|, which are independent of the value of u, hence the asymptotic
curves cut the generators in constant ratios.
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“Every good scientist should learn early that it is never in good taste to
precisely designate the sum of two gnantities in the form:

r L4951 =2 (1)
Anyone who has studied advanced mathematics is aware that Ine = 1 and
that also sin®x + cos®x = 1 and further i %ﬁ- =2,
n=0

Therefore, Eq. (1) can be expressed more scientifically as:

e+ Gintx b costy = 5 1| 2)
This can be further simplified by use of the relations:
1 = cosh y,/T — tanh?y and e — ,lir: (1 + —::‘);
Equation (2) may therefore be rewritten as:
o flim(1+ L) o int ot 35 S0 2/ tay ]l 5

At this point, it should be intuitively obvious that Eq. (3) is much clearer .
and more easily understood than Eq. (1).

Other methods of a similar nature can be used to further clarify Eq. (1),
but these are left for the reader to discover once he grasps the underlying

principles.”

UNKNOWN BUT ASTUTE SOURCE
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A NEW MODEL OF ULTRASONIC ATTENUATION
IN THE INTERMEDIATE STATE
VERY NEAR T.

FONG-JEN LIN

ABSTRACT

A theoretical model is given to account for the observed
oscillatory structure of ultrasonic wave absorption, a(T), in the
intermediate state of Indium very close to the transition tem-
perature T (T.-T<5mK). This model is based on the assum-
ption that quasiparticles’ free paths are much longer than the
spacing of the “super lattice”. Another important effect has
also been found, which can be attributed to the quasiparticles
with free paths comparable with the width of the normal
region.

INTRODUCTION

The density-of-state is modified from BCS due to quasiparticle scattering
in the SNSN...“superlattice” in the intermediate state of a supercoductor.

These new features were found in transverse ultrasonic wave attenuation
a,(T) in Indium near T,, the superconducting transition temperature. In
Fig. 1 an oscillatory a(T) is seen for 6T =T, — T < 5mK (millidegree K).
In the range of interest in Fig. 1 the acoustic phonon energy /iw is of order
0.01 A(T), the BCStV gap, and furthermore, Aw is comparable with the band
width and separation in the new quasiparticle energy spectrum just above
A(T), so that the modified density-of-states can have a measurable effect on
the observed a(T) due to electrons. The observed «,(T) structure is found
to be in good agreement with that determined from a theoretical model using
the new quasiparticle density-of-states.

The intermediate state of a superconductor consists of periodic NSNS...
(N: normal, S: superconducting) regions. Therefore, ultrasonic attenuation
is expected to be different from both pure superconducting and normal states.
The theoretical model for intermediate state acoustic attenuation was given
by Andreev and Bruk®. It takes into account the Joule heating due to
N-S wall motion, and has been in reasonable agreement with previous ex-

perimental studiest®*. However, our experimental condition is very different
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ay(db)

“hogrr ~F |,

w4
1
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Fig. I. Intermediate state attenuation versus dr for 105 MHz transverse
wave,

from previous experimental studies. Our whole intermediate state is in the
temperature range very close to 7. The value of d,/d ranges from 1 to
02 for 6T(=T, —T) of 0 to 5mK. Here d, is the width of the normal
lamina and d is that of an N-S pair. In this restricted temperature range,
Aw = 0.01 A(T). To achieve this restricted condition a very small applied
magnetic field H < 1 gauss is necessary.

The ultrasonic shear wave attenuation of Indium in the intermediate
state was studied as a function of 7, where the range of 4T is of the order
of 10mK. In this small temperature interval the temperature was swept at
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a rate of less than 3 mK per minute with the sample directly immersed in
liquid helium. The intermediate state was produced by the application of a
slanting magnetic field of magnitude 0.4 gauss at a direction 35° from the
sample surface. Transverse acoustic waves of frequency 105 MHz and 75 MHz
had a propagation vector g perpendicular to the surface of the disk ((001)
plane of Indium). The shear wave polarization vector ¢ was aligned in the
[110] direction of Indium. The N-S surfaces of the intermediate state were
arranged either parallel or perpendicular to the direction of polarization of
the shear wave. The features of Fig. 1 were consistently repeated, even to
the relative positions on the &7 scale of the attenuation structure.

THEORIES OF ULTRASONIC ATTENUATION IN
THE INTERMEDIATE STATE

(1) Geometrical Absorption

Treating the intermediate state as a combination of pure superconducting
regions and pure normal regions, the absorption is determined entirely by
the relative amount of normal and superconducting material sampled by the
ultrasonic beam.

Case (a): Wave propagation vector g parallel to laminas (equivalent
to parallel connection). Let Ly, be the initial intensity at x = 0 in the
(superconducting) region and Iy, be the attenuated intensity at distance x
in the normal (superconducting) region. Using the definition of attenuation

a, we have

Iy = Ly exp (— Xay) ,

and
Is = Ihs exp (— xas) .
For the parallel path case, therefore,

Is + Iy = Loy exp (— xay) + Log exp (— xas),

or

I_v b = IS Io,v_

i - - o hs ; i
Iy + I Lo+ Los ol Loy + log SKP(— Fikals

= ;3 = exp (— a;Xx).
0z
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Hence
eXp (— Xa;) = oy exp (— ay) + pg exp (— xag) (1)
where
oy = fraction of normal region
e
Loy + Ig
and

0g = fraction of superconducting region

Case (b): Wave propagation vector q perpendicular to laminas (N-S
connected in series). For this case we have

1y exp (= a,;x) = I, exp (— ayxy) exp (—asxs)
so that

— X = — @yXay — XgXg

@y = Ox&y + Pgttg . (2)

(2) Absorption due to Boundary Wall Motion.

The equlibrium magnetic field at normal side of the laminars S-N
interfaces is equal to H,. H, is a function of pressure and temperature, and
since the passage of the acoustic wave causes these to change, the magnetic
field at the interfaces fails to be H.. Since this violates the equilibrium
condition, the boundary between phases moves. Hence, an AC magnetic
field appears, eddy currents are induced, and energy is lost through Joule
heating. The attenuation obtained by Andreev and Bruk¢® is

_ AA+1—(nen)fF cH,
b e ds)sga‘( 87 ) > 3)
under the conditions
):S > 55 d."?s
dy > d (4)

where
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), - () o
In equations (3) to (5) ¢ is the density; s, and s; are the longitudinal and
transverse sound velocities; H., is the critical field at the equilibrium tem-
perature T and pressure P; m, n are the unit vectors in the direction of the
magnetic field and the sound propagation vector; ¢ is the normal con-
ductivity; & is the normal metal skin depth given by

g NI -
Qrow)2 ”

g

In equation (3), it is assumed that the sound wave length Ag > dy. Thus
the mechanism is important only for much lower sound frequencies than
used in the present experiments, where A~10~*cm and d,> 10"2cm. In
any case the Joule heating attenuation predicted by Andreev has none of
the features observed near T, in the present work. (See references 3 and 4,
in which the Andreev Joule heating absorption is examined experimentally).

(3) Absorption due to Electrons orbiting in A Magnetic Field®.

We summarize the results as follows:
(a) The Larmor radius R is much larger than the mean free path of
electron, L.

(i) ;{S<<d.N9

HET s
et Ox - (6)
(i) As > dy,
[25] dy
"a—v“ const. p_w—xsf ( b )
(b) R,
a; = a, + A (8)

e, is the monotonic part
ay = 0xPQ2dx/As) e (H)

where @(x) varies from 0 to 1, oY (H) is the field dependent attenuation of
normal state, and Ae is the oscillatory part, smaller than «, by a factor
(R/d)[fz.

In our experiment the electron mean-free-path [ is of order 0.1cm, R
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is of order 1cm, and Ag € dy. In other words our experiment is in catagory
(a) (i). Thus,

&y = OyCy

This means that the attenuation in the intermediate state is the same as in
the normal state. Therefore nothing new is predicted from a consideration

of the orbiting of electrons.

(4) Absorption due to Quasiparticle Relaxation.

This is a model for a peak in e, near T,(® requiring boundary motion,
The peak, which was found to be amplitude dependent and to increase in
magnitude very markedly with frequency, is attributed to quasiparticle
relaxation. However it appears that the phenomena of interest in the present
work are a separate effect. A series of peaks is found near T, which give
strong indication of being concerned with quasiparticle scattering from

boundaries.

NEW MODEL OF ULTRASONIC ATTENUATION

(1) Ultrasonic Attention due to Quasiparticles with Free Paths Much Longer

Than Spacing of “Superlattice”, d.

The theories existing so far can not explain our experimental result
because they fail to recognize the periodic N-S laminas as a whole. Since
in the intermediate state there is a periodic array consisting of alternating
normal and superconducting laminas, it is not correct to investigate quasi-
particle properties separately either in the normal or in superconducting
region. In other words, neither the normal nor the superconducting region
in the intermediate state is equivalent to the pure normal or superconducting
state, because the electrons see the N-S laminar structure as a whole.

In our Indium sample in the liquid helium temperature range, the mean
free path of electrons is of the order of 0.lcm and our laminar spacing
d(=d; + d,) is also of the order of 0.1 cm. Hence a significant fraction of
the total number of electrons in the effective zone has free paths larger
than the laminar spacing d. Therefore it is essential to treat the periodic
array of N-S laminas as a whole. When this is done we expect to find
the new energy spectrum to be different from that for both pure super-
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conducting or the normal state, and an entirely new density of energy states
will result. In turn this new density-of-state is expected to lead to new
features of the attenuation, which are not observed when the BCS density
of states is used.

The problem of the energy spectrum of the intermediate state is equivalent
to the energy spectrum of excitations associated with a one dimensional step
potential. We are faced to solve the Bogolubov equation of “alectron-hole”
coupled excitation. Van Gelder® has made a calculation of the energy
spectum of “electron-hole” coupled excitation and found the following solution

for the simplified one dimensional Bogolubov equation

G e Tl Jo
L Ax, T) " (2% 53 _22%;,) () v(x)

where A(x, T) is the pair potential or energy gap in the superconductor,
such that

A(x, T) = A(T) in the superconducting region,
and
A(x, T) = 0 in the normal region. (10)

Here [u/v] is the two component wave function of the “electron-hole” paired

excitation with eigenvalue E, subject to to the normalization condition
Wt vt=1 (an
There are two special cases:

u=1,v=0for E>0 (electron-like); and
u=0v=1fr E<0 (hole-like).

Setting
e=E/A (12)
we have the solution for & > 1
cos[K — k,)d] = cos (Ae) cos [B(* — 1)V}

_ [Tsz_—il)_m] sin (Ae) sin [B(1 — €*]  (13)
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and for e < 1
cos [K — k,)d] = cos (4e) cosh[1 — e2)1/2]

—[TI;%ﬁpg]dn@k)QMQBﬂ-eﬂ”ﬂ. (14)
K is the Bloch momentum along the x-axis (i.e. normal to the laminas), k,
is given by
K, =k+k+k (15)
and
A= d_;v/ﬂf
B= dg/d
a = h*k./mA

Writing equations (13) and (14) symbolically as
F(K) = Fe)
the range of value of K is
—1<FK)<1
Therefore, the allowed energies are such as to confine F(e) in the region
—-1<Fe <1

In other words, & values such that | #(e) | > 1 are forbidden.
The density of state in the forbidden region is zero, in the allowed
region, it is given by

o) = o 28 (16)

From numerical solutions, the allowed band width and band separation
are of the order of 0.01 A(T). The allowed energies below the gap A(T)
are narrow and rather widely separated lines, the spacing between lines being
of order 0.1 A(T).

The transverse wave attenuation @; by electrons in Indium near T, when
gl > 1, as in the present case, is given by @, = a,, + @;p where a,, is
the contribution from electromagnetic interaction, and a,p is arising from

shear deformation of the Fermi surface. At temperatures very close to T,
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both @, and the variation of e, are dominated by electromagnetic interaction.
Therefore, we shall consider only attenation due to electromagnetic interac-
tion. The ratio of a; (attenuation in the modified N or S region of the

intermediate state) to ay (attenuation in the normal state) is®:

er 0'1)/511\1(‘."2 + 1) (17)
N (r + 02r/ow)® + (Gur/ow)*
where
_ qzce
"= Tdrxwoy

¢, and o, are the real and imaginary part of conductivity o, ds;/o1y is only
important for the case that the density of states of a quasiparticle follow the
BCS density of states, 7 is of order of 10-2. For the first approximation
ST, _.__1_.
ay ~ (01/0w)
The expression for (d1;/d1x) appropriate to the electromagnetic absorption
is given by Mattis and Bardeen®:
in a modified super conducting region

(%4

sy, - (hw/A)j oo (e + )1+ ‘s(s—+1rzm]
" [j(e) — (e + E»)]de, (18)

In a modified normal region

(5) - g ool 22 o= ) e o

The plus sign suffix to the conductivity ratio in equation (18) indicates that
a plus sign is used in the coherence factor (the first factor enclosed in
brackets is the coherence factor); hw is the phonon energy; f is the Fermi
function.

Calculating the density-of-state from p(e) = (hvx// 3 A) (dk/de) and
numerically integrating eq. (18) and (19), either (01s//0y)s O (Oiv'/01y)
versus 6T is no longer a smooth, monotonicly decreasing curve as in the
case of the BCS calculation.

The line-like energy bands in the region 0 <& < 1 do not make direct
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contribution in calculating (0;;/¢,y), because these lines are found to be
much narrower than Aw and have the spacing of about 10Aw. It is also
found that for & > I, the influence of the SNSN. . .superlattice becomes
important. The computations find sharp bands (band width < kw) for
1 <& < 1.1, with band separation ~ fiw. With increasing e the band widths
increase, separation remaining of the order of Aw up to the value & = 3.
The above mentioned modification in the spectrum is important. From eq.
(18) and eq. (19) we realize that in order to have an oscillatory variation
of (gy;/01y) within the range 8T of a few millidegrees, two requirements
must be satisfied, namely (1) the density-of-state must vary appreciably within
that range of 4T, and (2) p(e) must vary appreciably in energy of the order Aw.
The new modified spectrum satisfies these two requirements. It is expected
that (¢.g//01y), and (dy4/01y) and hence a, /ey have on oscillatory structure,
and therefore the relation connecting (er/ay) and (oy;/0.y) suggests that the
dips in (019 /01y), and (oyy [o1y) versus 6T will correspond to peaks in the
temperature dependence of a;/ey. In Fig. 2 the calculated dependence of
(d187/01x), and (dyyr/0.y) on temperature in the range 0 < 6T < 5mK are
shown. Both of them show the same oscillatory structure. The calculation
for (o1s7/01x), and (o, /01y) versus 8T, in Fig. 2 was carried upto E/A = 3.
Caculation for the higher limit shows the same oscillatory structure. It is
seen that the observed attenuation structure coincides rather well with that
calculated for (oisr/01y), and (dyy/o1y) from the new theoretical model.
The structure in attenuation disappears for values of &T > 5mK, while the
calculation of (dysr/01y), and (g1 /01y) versus 6T suggests that the structure
persists to the value of 07 greater than 5mK. However, the calculation
assumed a demagnetization factor of 1, whereas the disk had a diameter to
thickness ratio of less than 10:1. Even on the assumption of an “infinite
plate” geometry, for H = 0.4 gauss, the 6T range 0 to 5mK corresponds to
an H/H, value from 1 to 0.2; and independent studiest® of the intermediate
state have demonstrated that, even for the slanting applied fields, well ordered
laminas are not commonly formed for H/H, values below about 0.2.

(2) Ultrasonic Attenuation due to Quasiparticles whose Density of States are
modified by Single Rectangular Potential Well

(a) Density of States of Single Potential Well
We have attributed the oscillatory structure to the superlattice density
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Fig. 2. Conductivity ratio (s7s'/ozx)+ and (gzn'/ozn) versus T for
105 MHz transverse wave. (The indicated points are nu-
merically integrated, from equations (18) and (19), up to
e=3).

of states, as sampled by long free path quasiparticles. Quasiparticles with
a short free path will follow the absorption predicted by the geometrical
absorption. In geometrical absorption we assume that the density of state in
the N, S regions are exactly the same as that of pure normal and pure super-
conducting regions respectively, because of their short free paths they can
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only sample either a normal or a pure region. If the mean free path is of
the laminar spacing, a large fraction of the quasiparticfcs have free paths
greater than the spacing of the normal region, they may sense the existence
of a single rectangular . potential well. The rectangular potential well is
formed by each S-N-S region, because the pair potentials in the normal and
superconducting  region are zero and A(T) respectively. Now, we have to
calculate the density of states of those particles, which sense the existense
of the single potential well. Andreevt'" and Galaiko"® made an approxi-
mate calculation, which shows that the energy levels of quasiparticles inside
the well are quantized with energy separation AE = rmv/dy. v is the com-
ponent of the Fermi velocity in a direction normal to S-N-S boundaries.
Quantization of energy levels can also be obtained from eq. (14), simply by
letting dg — oo, by doing so, each S-N-S region approximately becomes
a‘single potential well region.

From eq. (14)

cos [(K — k.)d] = cos (A4c) cosh [B(1 — &%)'/%]
£

o Tl—_é—z)l—/z— sin (AE) sinh [B{]. — 52)1/2] &
Now let
dg -3 CO
i.e. B—co
hence

cosh [B(1 — £%)¥2] = sinh [B(l — e%)¥*] - o

|:cos (Ag) — a --_%2-)—1—,2— sin As)] e oo = finite

cos (Ae) — o= 22)[-,27 sin (Ag) = 0
tan (Ae) = -(I—*E—Ez)w h (20)

Thus the values of e, lying between 0 and A(T), are the roots of the
transcendental equation (20), lying between 0 and A(T). These roots,
which turn out to be real, and finite in number are the energy levels of
those quasiparticles, which sense the existence of a S-N-S single potential
well. Separation of these energy levels, which are in good agreement with
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the value calculated by Andreev and Galaiko, is of order 0.1 A(T). Since
the energy separation for e < 1 is about ten times greater than the ultra-
sonic phonon energy (hf, f ~ 100 MHz), they do not contribute directly to
the ultrasonic attenuation calculation. Therefore we will concentrate on
the contribution obtained from &> 1 (i.e. E > A(T)).

Now, we turn to the Bogolubov equation for a single rectangular po-

tential well (see Fig. 3).

—dy2 0 duf2

Fig. 3. Single rectangular potential well in the intermediate state.

In region II, A(T, x) = 0, the Bogolubov equation becomes

; u(x) + (2—’;‘2§ + ko) u(x) = 0
j o) + (ke — z’ng) 2(x) = 0 1)

The general solution of equation (21) is

uy(x) = ¢; sin (k*x) + ¢; cos (k*x)

vi(x) = ¢y sin (k™x) + ¢, cos (k™x) (22)
where
172
k= (k£ 2% B 3)

In regions I and III, the Bogolubov equation equation can be written as two

coupled differential equations,

d; u(x) + au(x) — Bo(x) = 0

d2
dxt V) + 7v(x) — Bu(x) = 0 (24)
whers
, , 2mE 2m A ) 2mE
a=Kk + e s B o= i? and?’:k;__ﬁz"
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The general solution of equation (24) is

HI(JC) = aqe"f"r" + otze"'"f’” + aaeil’-: + aae-iP-:

vy(x) = —é— [(1 — S) (@674 + a e_,.PH)]

+ é{(l + 5) (@uei™ + e | @5)
where
Po=o 1+ 2% B, C=AE,
and
SV 12 R, (26)

Respective general solutions of regions I and III are

Uy(x) = CcseP+s + coe P+ 4 creiP-* + cee™iP-%]
vi(x) = (1 — §) [cse' P+ + coe™iT+] + (1 4 8) [P~ + cee™P~] (27)
Um(x) = Ccee P+ + €™+ + ¢11e"F-* 4 cppe™iP-7]

Vin(®) = (1 = S) [P+ + €€~ T+] + (14 5) [creiP-* + cppe™F-*] (28)
The well behaved solutions in regions I, II, III, i. e. equations (22), (27) and
(28), are subjected to eight continuity conditons at x = — dy/2 and x = dy/2,
namely,

u (— dy/2) = tu (— dn/2)
U1 (— dy/2) = tu(— dy/2)
up (= dy/2( = uj, (— d¥/2)
v} (— dn/2) = v}, (— dn/2)
up; (dy/2) = (dn/2)
v (dy/2) = Vi1 (dn/2)
uf; (dx/2) = uly (dn/2)
vl (dw/2) = v}, (dn/2)

where ! stands for the first differentiation with respect to x. Without going
into detailed calculation, we already can see that a solution with 12 un-
determined constants subjected to & continuity conditions and 3 normalization

conditions is an acceptable solution. In other words the spectrum of energy
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above A(T) is continuous.
The continuous kinetic energies in region IT and III (or I) can be obtained
from the corresponding wave vectors, which are given by equations (23) and

(26) respectively

h2k? 2k

o am L E @
h2P2 h ki e —— -
B o tle v B/ T— (B/EY (30)

In a pure normal region the kinetic energy is related to the wave vector in

a well known form, i.e.

Bk P
Ey= 5= (or e ) : (31)

The density of state in either region II or region IIT (or I) relative to
the pure normal state is given by

_ NE) _ | dE;
oE) =N gy = | aE

E

therefore, from equations (29) and (30) we find

| dEy

n(B) = | G| = 1. 32)
o | 9By | _ T (ATEF + —
O orIII(E)—i B v 1 —(AJE)? + 2 T= (AJEF
—2A - A 1
’ (—__E_) (77E37 ) = 71T"—M(“T/TT = Ogpog: (33

These results are unexpected, namely the relative density of states in the
normal, and superconducting region in a rectangular potential well is exactly
the same as that of the pure normal and superconducting region for £ >
A(T).
(b) Attenuation due to the Energy of a Single Potential Well
In region (1I), (dsx/01y) can be obtained from equation (19) by sub-

stituting  pp(E)
ie,

(0‘1.\;_!_)“ = % f: [AE) — {E + hw)] dE.

O
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Because of smallness of the /w i.e. iw € KT, (01y//d1y)n becomes

vt Y b af: orio el N =

Iin

Thus, the attenuation in region II is

(zi),,zl/(%)lﬁl/zf(m. (35)

This is a rather interesting result, since 2f(A) is less than 1, hence, the
attenuation in the normal region of a rectangular potential is predicted to
be higher than the pure normal state. Usually the opposite is the case.
We have shown that the density of states of a modified superconducting
region (I & III) is exactly the same as that of a pure superconducting state.
Therefore, the attenuation can be obtained by using BCS density of states
in calculation,
From equation (17)

(f"’ﬁ"’i) » (@15 /O, m (7* + 1)
Ty /p,m (r + degr[o13) + (15 [o13)%°

where

(), = (), = o [ 02cs(E) bucsE + )

iy Ty

AZ
. [1 - E(—Eﬁﬁ] [E + hw))dE. (36)

The calculation of (g,g/01y), with approximations appropriate to the case

of acoustic waves was made by Cullen and Ferrell®'®

(e )+ =Y p é BA(T)In (—“%;wﬂ) - (l‘fr(fl)(m(r»s 37)

Jiy
where e is the base of natural logarithms, 8 = 1/KT, K is Boltzmann’s
constant, &3) is the Riemann zeta function, of numerical value 1.202. From
Pippard theory#

hC? 1

(i), = 8 = mters T

(. —T) (39

where

vg: ultrasonic wave velocity
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A(0): penetration depth at T = 0.

In the present case, v in equation (16) can be written as

2mcth ( f \°
i B e’ (KJ) (39)

The temperature dependence of (ay'/@x)u and (ag /o), m according to

the single potential well model are calculated and listed in Table 1.

Table 1. Transverse wave (105M Hz) attenuation ratios versus dr,
calculated according to a single potential well energy

spectrum.
dr(mK) | (an'/axn l (as'/ax),mn | dr(mk) I (an'/an)n { (as'/an)i,m
0.1 | 1047 08131 | 26 | . 1.067 0.6448
0.2 | 1.049 0.8079 | 2.7 1.068 0.6373
0.3 1.049 1.8026 2.8 1.068 0.6299
0.4 1.050 0.7971 2.9 1.069 0.6224
0.5 | 1081 0.7914 3.0 1.070 0.6151
0.6 | 1.052 0.7856 3.1 1.070 0.6077
0.7 1.053 0.7795 3.2 1,071 0.6003
0.8 1.054 0.7733 1.5 1.072 0.5930
0.9 1.055 0.7665 3.4 1.072 0.5858
1.0 1.055 0.7604 3.5 1.073 0.5786
1.1 1.056 0.7536 3.6 1.074 0.5714
1.8 | 1087 0.7470 %7 1.074 0.5644
1.5 | 1.058 0.7401 3.8 1.075 | 0.5573
1.4 | 1058 0.7330 3.9 1.076 0.5503
1.5 | 1.059 0.7260 4.0 1.076 0.5434
1.6 i 1.060 0.7188 4.1 1.077 0.5365
1.7 | 1.061 0.7116 L) 1.077 0.5297
1.8 |  1.061 0.7043 4.3 1.078 0.5230
1.9 | 1.062 0.6970 4.4 1.079 0.5164
2.0 | 1.063 0.6896 | 4.5 1.079 0.5098
2.1 ! 1.064 0.6822 4.6 1.080 0.5033
2.2 | 1.064 0.6745 4.7 1.080 0.4969
23 | 1.065 0.6673 4.8 1.081 0.4905
2.4 | 1.066 0.6598 4.9 1.082 0.4842
25 | 1.066 0.6523 5.0 1.082 0.4780
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(c) Attenuation due to Deformation Potential Interaction
Since o(E) =1 in a modified normal region, therefore,
Gt} (O o iy 2 f"’ -
( ay )JJ = ( Oy ) - Al,ﬂnu hw Ja LAE) — AAE + hw)]dE
2(N(T)) . (40)

]

We have shown before that the density of states in the modified super
state is exactly the same as that of the pure super state, therefore, the
attenuation follows the BCS derivation:

i.e.
(da') - (ﬂzs,) L 2fHrE E (E+Amw)
vay /' Nogy/- hw Ja (B — ABHlz [(E + Aw)? — AZ]2
[t~ gy | U@~ SE + o aE

as before Aw €« KT, or hiw— 0

(52), = (22) = tim 2 [“178) - (B + mw)dE

Xy CIN/! o hw-o BW
=~ 2AA(T)) . (41)

Both attenuations in the modified normal and super states are equal to
the attenuation in the pure superconducting state. In other words, according
to the single rectangular potential well calculation, attenuation due to defor-
mation potential interaction in the intermediate state is the same as that of

the pure superconducting state.

NUMERICAL CALCULATION

The following equations of the intermediate state have been used in the

numerical calculation:

py: fraction of normal region
dv hsin B

T4 T (T ki cost By
where
H = 0.40 gauss, applied slanting magnetic field, making an acute
angle (= 35°) with large surface of the disk specimen.
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H/(T): critical magnetic field at temperature T°
Ta
~uo[1- 3]

T,: transition temperature in zero magnetic field.

6 1/2
) (oot B1)
spacing of intermediate laminar

1/2

d=dy+ds= ("cﬁ

¢ = 0.1206 cm, thickness of specimen

& = 6y(1 — T/T )2, 8o = 3.3 x 10~ cm for Indium.

#(py): function of normal fraction, has been computed by
Lifschitz and Sharvin, and is tabulated in Table 2.

Other numerical values which have been used for Indium are:

T(H = 0) = 3407 K
H(0) = 283 gauss

Kp = 1.54 x 108 cm™!
A(0) = 2.38 x 10~%cm
vg = 1.035 x 10° cm/sec.

Numerical values concerning the intermediate state of our Indium

sample are listed in Table 3.

Table 2. Function ¢(oy).

o ] ¢

1 0 [ 0

0.9 0.1 0.0020
0.8 | 0.2 0.0065
0.7 0.3 0.0128
0.6 0.4 0.0182
0.5 0.5 0.0221
0.4 | 0.6 0.0224
0.3 ‘ 0.7 0.0195
0.2 0.8 0.0136
0.1 0.9 0.0035

Lo | 0
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Table 3. Summarized values in the intermediate state.

| | A(T)
or (mK)! @rfd) | dfem) | dyem) | ds(em) | (G rerg
0.1 0.8942 0.4089 0.3656 0.0433 4,282
0.2 0.8166 0.2406 0.1965 0.0441 4.359
0.3 0.7542 0.1790 0:1350 0.0440 4.435
0.4 0.7026 0.1454 0.1022 0.0433 4.509
0.5 0.6591 0.1278 0.0842 0.0436 4.582

|
0.6 0.6216 0.1157 0.0719 0.0438 4.654
0.7 0.5889 0.1074 0.0633 0.0442 4.725
0.8 0.5601 0.1014 0.0568 0.0446 4.794
0.9 | 0,534 | 0.096 0.0516 0.0450 4.863
1.0 | 0.5113 0.0926 0.0474 0.0453 4.931
1.1 0.4904 0.0894 0.0438 0.0456 4.998
1.2 0.4714 0.0871 0.0411 0.0461 5.064
1.2 0.4541 0.0854 0.0388 | 0.0465 5.129
1.4 0.4381 0.0840 0.0368 0.0472 5.194
1.5 0.4233 0.0829 0.0351 0.0478 5.257
1.6 0.409 0.0819 0.0336 | 0.0484 5.320
1.7 0.3969 0.0811 0.0322 0.0489 5.382
1.8 0.3850 0.0805 0.0310 0.0495 5.443
1.9 | 0.3739 0.0800 0.0299 0.0501 5.504
2.0 | 03635 0.0795 0.0289 0.0504 5.564
2.1 0.3537 | 0.0792 0.0280 0.0512 5.624
a5 0.3444 0.0789 0.0272 0.0518 5.682
5.3 | 03357 0.0786 0.0264 0.0522 5.740
24 | 03274 0.0784 0.0257 |  0.0527 5.798
2.5 | 0.31% 0.0782 0.0250 0.0532 5.855
2.6 | 03 0.0780 0.0244 0.0537 5.912
a'n 0.3050 0.0778 0.0237 0.0541 5.967
2.8 0.2933 0.0778 0.0232 0.0546 6.023
2.9 0.2919 0.0776 0.0227 0.0550 6.078
3.0 0.2857 0.0777 0.0222 0.0555 6.132
2 0.2798 0.0779 0.0218 0.0561 6.186
33 0.2742 0.0780 0.0214 0.0566 6.240
39 0.2688 0.0871 0.0210 0.0571 6.293
3.4 0.2637 0.0782 0.0206 0.0576 6.345
5.4 0.2687 0.0783 0.0203 0.0380 6.397
3.6 0.2539 0.0786 0.0200 0.0587 6.449
BiF 0.2493 0.0788 0.0197 0.0592 6.500
3.8 0.2449 0.0789 0.0193 0.0395 6.551
3.9 0.2407 0.0791 0.0190 0.0600 6.602
4.0 0.2365 0.0792 0.0187 0.0604 6.652
4.1 0.2326 0.0794 0.0185 0.0609 6.702
4.2 0.2288 0.079% 0.0182 0.0614 6.751
4.3 0.2251 0.0800 0.0180 0.0620 6.800
4.4 0.2215 0.0801 0.0177 0.0623 6.849
4.5 0.2180 0.0805 0.0176 0.0629 6.897
4.6 0.2147 0.0807 0.0173 0.0633 6.945
4.7 0.2114 0.0811 0.0172 0.0640 6.993
4.8 0.2083 0.0813 0.0169 0.0644 7.040
4.9 0.2052 0.0817 0.0168 0.0649 7.087
5.0 0.2023 0.0816 0.0165 0.0651 7.134
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DISCUSSION

One might ask: “If our model is valid, then why have the present
experimental results not already been observed by others®*»#9?” There are
two considerations here.

(1) Previous intermediate state studies used high magnetic field (HA(T)/
H,(0) ~ 0.5). This means that the intermediate state was studied far away
from T.(H = 0), because the critical field increases with decreasing tempe-

rature roughly according to the law

HT) = H(O) [ 1 - _7-,320)] .

Consequently, the intermediate state in these studies was not examined
in the electromagnetic interaction range very close to T.. (This range is
only about 10 mK below T,(H = 0)). In our case, our minute field (0.4 G,
H/(T = 0) = 283 G) guaranteed that the intermediate state is achieved within
the first .10 mK below T.(H =0).

(2) According to our new quasiparticle excitation spectrum, the band
width and band separation is about 0.01 A(T). Also, because our tempera-
ture range is so close to T,(0), A(T) is sufficiently small that the phonon
energy Aw(f~ 100 MHz) is of the order of 0.01 A(T). Thus, hw ~ band
width W and interband separation W/'. Now the effect of the band modi-
fication is felt strongly, since hw ~ W, W'; a significant fraction of the
electrons absorbing Aw can not find available states and their transitions
are forbidden. This implies a reduction of tiansition probability and a re-
duction of (d,s//01y), and (¢1y/01y). Therefore, an oscillatory structure of
attenuation e, results.

In previous studies of the intermediate state lower temperatures applied.
Hence iw < A(T), A(T) changing with T roughly according to the law

A(T) = 3.2 KpT(H = 0) [1 i 7’?{2'—(3]

Thus Aw < band width and interband width, and only few electrons contri-
bute to the modified transition probability due to unavailable states in the

interband region.
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One might also ask whether or not the electrons responsible for the
new attenuation mechanism are the electrons in the effective zone. Elect-
rons in the effective zone are those with ¥, normal to the wave pro-
pagation vector (}; hence, if we arrange c} in the direction parallel to N-S
intersurfaces, then, the effective zone electrons lie in NSNS...planes. Each
NSNS...plane consists of a NSNS...region, therefore, electrons in the
effective zone suffer a drastic change in density of states. In other words,
electrons in the effective zone are precisely the electrons which are able to

contribute to the attenuation of the present model.

CONCLUSION

(1) The oscillatory structure of transverse ultrasonic attenuation is qua-
litatively explained.

(2) The transverse wave attenuation of the normal region, due to mo-
dification of density of states by S-N-S potential well, is higher than that
of the pure normal state, and is frequency independent (i.e., 1/(2(A(T)))).

(3) Our model also predicts the existence of an oscillatory structure
for longitudinal wave attenuation for the intermediate state very near T,
where only the deformation potential interaction is important. In this case,
oscillatory variations of attenuation are proportional to (d.y7/01x) and (o141/
o,1y)— for the modified normal and super-state region respectively. Similar to
the transverse case, particles responsible for the oscillatory structure are those
which sense the N-S-N-S...“super-lattice”. The experimental verification
will be harder than for the transverse wave case, because longitudinal attenua-
tion is much smaller than in the transverse wave case. Furthermore, the
longitudinal wave attenuation due to the modification of density of states of
particles by the S-N-S potential well is exactly the same as that of the
pure super conducting state (i. e. 2{A(T))).

(4) According to our model, the total attenuation in the intermediate

state very near 7., @y, is given by

oy = &y + Qsp + Ay

where a, stands for the geometrical attenuation due to particles sensing
N, § regions of the intermediate state as pure normal and pure super con-

ducting states; a,, and ea,, represent respectively the attenuations due to
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particles sensing the SNS single potential well and particles sensing the
NSNS..."super potential lattice”. Calculations of e«,, @, and «,, are
given in our model, therefore, not only the oscillatory structure, but the
whole attenuation curve can be verified experimentally in future. A fruitful
experimental check of our model is to use samples with various mean free
paths. The attenuation of these samples will be different according to our
model, because the weight factors of a,, &, and a,, will be different if
the mean free path of quasiparticles is changed.

(5) Since both dy and dg are not microscopic values, it is possible, but
experimentally difficult, to detect either the dy region or the dg region
separately. Following this suggestion, we can verify the predicted attenua-
tion in either the N region or S region directly.
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“The right to search for truth implies also a duty; one must
not conceal any part of what one has recognized to be true.”

EINSTEIN’S CREDO
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STATISTICAL MECHANICS OF NONUNIFORM
STELLAR SYSTEMS

KunNG-TUNG WU

ABSTRACT

The statistical-mechanical “description of the nonuniform
system is presented. The B-B-G-K-Y hierarchy of equations
for the reduced distribution functions are used to derive the
kinetic equation for nonuniform stellar systems, but restricted
in a finite domain Ly, Jeans length. The close collision efects
are ignored by a cut-off Lmin. The mean field is taken as
uniform by following a proximate encounter approximation.
The Fourier-Laplace transforms and simple contour integra-
tions are performed in calculating the collision operator.

I. INTRODUCTION

In the history of dynamical studies of star clusters, a number of basic
points have become clear. First, Chandrasekhar’s®™ theory of stellar en-
counters has shown that the mean free path in a star cluster is many times
the radius of the cluster., Spatial mixing is therefore much more effective
than relaxation through stellar encounters, and one may expect the structure
of a star cluster to be closely represented by a solution of the encounterless
Liouville equation, with stellar encounters producing a slow evolution from
one such solution to another. The general solution of the steady-state
encounterless Liouville equation was given long ago by Jeans(™.

Since the time of relaxation at the center of a globular cluster is a
small fraction of its age, it is natural to look to stellar encounters to provide
the regularizing mechanism in star clusters. The dynamics of the encounters
which were described by use of the Fokker-Planck equation was provided by
Chandrasekhar® to calculate the effect of encounters on a velocity distribu-
tion of stars. Spitzer and Harm® attempted to use the steady-state velocity
distribution to derive a cluster model, and Michie®® derived a distribution
function for a spherical stellar system from the Boltzmann equation with en-
counters. Larsont® used a numerical analysis to study the secular evolution

of star clusters, and the numerical methods which are based upon the Fokker- .
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Planck equation of Chandrasekhar were developed by Aarseth et al.™

It has been shown both theoretically (Von Hoerner)® and observation-
ally (King)® that a star cluster is not unlimited in extent; a finite boundary
is set by the tidal force of the Milky Way. Based on steady-state solutions
of the Fokker-Planck equation, King® presented a dynamical model of
star clusters which are spatially limited, corresponding to the tidal cut-off
imposed by the Milky Way. The choices of the cut-off are quite insensitive
to the divergence of the scattering cross-section of binary encounters in an
infinite homogeneous medium, because the divergence is logarithmic. Ac-
cording to Cohen et al.“? it was realized that the Jeans length L;, corres-
ponding to the minimum size of gas clouds which will collapse, provided a
more appropriate choice of the cut-off. The finite duration of the encounters
was considered by Prigogine and Severne®®, and Ostriker and Davidsen®,
Other kinetic problems for gravitational systems are treated by Haggerty
and Severne® and Lerche®®,

A microscopic approach to the kinetic theory of a nonuniform system
was taken by Chappell®® and Prigogine and Severne”. The force auto-
correlation for the case of a bounded system was discussed by Cohen and
Ahmad®®, The description of encounters in an inhomogeneous system is
quite different from the homogeneous case, and the resulting kinetic equa-
tions are very difficult to interpret. Thus, in this paper, we attempt to
study the kinetic behavior of the nonuniform stellar system, but limited to
a finite region. For a finite system, the maximum linear dimension L of
the system provides an upper bound to the separation between any two
particles and thus appears as a natural cut-off in all collision integrals.
This will remove the difficulty of the long range of the gravitational in-
teraction, and leave the self-gravitational field to play the dominant role.

II. THE B-B-G-K-Y HIERARCHY OF EQUATIONS

Consider our system (cluster) of N particles (stars) with known in-
teraction in a volume V. To concentrate our attention on the volume
effects and to minimize the boundary effects, we shall assume the system
to be infinite by allowing both N and V' to become infinite in such a way
that the density n = N/F remains constant. The state of the whole system
is described by the probability distribution function in the 6N-dimensional
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space Dy(X;, X, -, Xy; 1), where X; = (g, pi) denotes the coordinates and
momenta of the ith particle. We take this distribution to be normalized

to unity:
[ [tk o Xy Dy oy X ) = 1. (1)

The change of Dy with time is governed by the Liouville equation:

5‘DN o] ¥ aI‘I_ aD_v ﬁfiv 3DN
~gr = [Hv Dylr =2 (‘aqu 9P, ~ 9P, * Og v), £2)

where [ , ]» is the Poisson bracket, and H is the Hamiltonian of the

system,

N - -
Hy = 335 PH+ V@] + 215 = @) (%)

V(g;) is the external field on particle i, and ¢(|¢;,- — g;|) is the in-
teraction potential. We shall write for brevity

@5;;E¢(|¢}-‘-511)-

Now let us define the series of N functions Fy, Fa, -+, Fy by
N=8
Fs(Xis s Xy 1y = V3 {77 e (DA v Kt DXy ()

When we integrate Eq. (2) over Xg.i, -+, Xy and pass to the limit N— oo,
V — oo, n = N/V = finite, we obtain the so-called B-B-G-K-Y hierarchy
of N equations (which were found independently by Bogoliubov, Born and
Green, and Kirkwood and Yvon).

oF -5
68 = [Hs, Fslp "r' ¥ IdX3+: [Z_; i 5415 F.5'+1:l ) (5)

§=1,2, ., N

where
5, [ P 1,2
Hs =33 25 + Via)| + 2 ds-
i=1 m 1<i<i
The use of successively simpler distribution functions is made possible
by the existence of the widely different characteristic time scale in a system.
Here, we consider that the cluster is contained in a stable isolated sphere

of radius given in order of magnitude by the Jeans length L;. In a
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statistically steady state, we know that 27 4+ @ — 0w, 7T represents the
total kinetic energy of the residual motions (i.e., the motions relative to
the center of the cluster), and 2 is the total mean correlation energy. It is
easily shown that the velocity dispersion is

so that
Ly = /v Goye,

G being the gravitational constant and p, the mean mass density. Let
{m) be an average mass of stars, then L% py ~ N; {m)». The Jeans number
N; is given by

== f::fpﬂ — —3/2
Ny = 23 =0(6"),

N; can be identified in order of magnitude with the total cluster population:
N;~N.

The basic characteristic time scales of our system can be distinguished

as following:

t.: the duration of a collision: this is the time which a star moving
with the average velocity spends in the sphere of influence of
another star, v being the average velocity of stars, 7, ~ L J/zT .

t,: the kinetic relaxation time: this is the time which the system
needs to reach some sort of local equilibrium.

ty: the hydrodynamic time: defined as the time necessary for a particle
to travel through the hydrodynamic length scale L,.

Let the cluster, at an instant ¢ =0, be in an arbitrary initial state. In

a time of order ¢, the cluster rapidly changes its state on account of the
interstellar interaction ¢;;, and the individual star may cross the system
many times. This is the violent relaxation stage as described by Lynden-
Bell*®,  After a few crossings, the stellar encounters have brought the
system to some sort of local equilibrium characterized by a local Maxwellian
velocity distribution. This is the so-called kinetic stage. In the further
evolution ¢ > t,, when the encounters have brought about some degree of
local equilibrium, one can describe the system by the hydrodynamical equa-
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tions. This slow secular stage and its secular time scale ¢, which is about
2 or 3 orders of magnitude larger than ¢, has been studied by Larson®.
Here, in our system, the ratio of the mean correlation and kinetic

energy is

%N%—E-:G(m 2/8 péxaﬁﬁst/s_ (6)
Obviously, this shows the weakly coupled nature of the system, and thus
the characteristic time scale of our system is restricted by the following
order: ¢, € & £ty
In the form of the B-B-G-K-Y hierarchy, an approach initiated by
Rostoker and Rosenbluth®”? is to have a cluster expansion of F; Fs
together with some assumptions on the relative magnitudes of the correction
functions and the uncorrelated distribution functions. With these assumptions,
we can solve the hierarchy in finite, low orders. The integration of the

equations is effected by means of a Fourier-Laplace transform in time. -

III. THE KINETIC EQUATION

Let F(qy, p1; 1) dq dp, = F(1)dX; be the number of stars having co-
ordinates lying between ¢, and ¢ + dg, and momenta between p; and
py+dp,. We expand the many-particle distribution function Fp, Fs -+,

in cluster expansions familiar in equilibrium statistical mechanics, that is

Fy(l, 2) = F(1) Fy(2) + G(1, 2), (7)

Fy(l, 2, 3) = Fy(1) F2) F,(3) + Fi(1) G2, 3) + Fy(2) GG, 1) (8)
+ F{3) &1, 2) + g(L, 2, 3). -

The term G(1, 2) is the two-particle correlation function, and g(1, 2, 3)
is the three-particle correlation. In the following, we shall drop the sub-
script 1 from F,. The equations for F and G can readily be shown from
the B-B-G-K-Y equation (5) to be
(;’; + 5y oV 4 o 6‘1) ()
Pl = 7] = 7] (%)

= rl.ﬂ_ﬂl— Vi@ P T Vil * 65 }G(ls 2)dp.dgs

Uy 2



40 Statistical Mechanics of Nonuniform Stellar Systems

l:—'a_*+51'61+52‘€2+ﬂ(kl' 66

7t LB Kz . —a-.—)] G(1, 2)

U1 Ve
= 1ifaz o) i nid
=Vi0ne (0, 5o = wy g JEOF@ + Gl 2)]

(10)

+n 3 o O Ry ¥ [0 Gl D dad
1 M; 31-}} i | @is G, qs aps

L 0
+n3 [agy Viens 5ol 2, D dasdp,

where ¢;; is the gravitational potential energy and V; = 8/0g:.
For an isolated stable cluster, K; is the self-consistent acceleration field

B =K@ 0 = = 3 i [ 00 FU) day ;. )

Let us express all lengths in Egs. (9) and (10) in units of the Jeans length
L;. Time will be expressed in unit of 7, = L,;/v.. Further, write the

gravitational interaction in the form

G M; M; G M; M; L, G M; M;

Pij=— —F—+ = ( ﬁ)—
¢ la—a1 Lo | g — g1

where U;; is a dimensionless function of the dimensionless distance |:1,- = c},- s

s (12)

Also, let all Fg be dimensionless functions defined by

JEapaar = (15:)",
(13)

Fo= (52)"7 [Futapdapr-s.

Then F and G are normalized as above, so that they are dimensionless.

Egs. (9) and (10) then become

OF & = =
73 + v e Vi F —uy ﬁ'_.“ . fV: Uz F(2)dX,

= J“(HIVL Uy » "a-.* —u, Vi Uy ’i_.) GdX;, (14)
61)1 6”2
iy ST 5 A
| M; ] 2 2 »
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%_(t;+|:51'62 +£2'€rz —E'%1U1z° (HL 6-?;?—”2?2.**\)}(;
1 2
=€V, Up » <u1 1 —‘3—) F(1) F(2)
v, v,

+ [ax, F) (zh TN L —"’f.—) G(1, 2)
o, 0v,y

; (15)
+ fax, [u (2, BV g s =T
ovy

+ 3 G(1, 3) V; Uy » Q- F(z):l
ov,

= 0 = )
+ jan l}h ViU ”at-,.z* AL 732;;:' g(l, 2, 3),

where € is the dimensionless parameter,

1 1 1 g
o~ ~ (G,

R R~
IIL:. NJ

€ is the reciprocal of the number of stars in a cube of sides equal to
the Jeans length L,. The assumption is now made that G(I, 2) is of
order € relative to F(1)F(2), and g(l, 2, 3) is of order €* relative to
F(1) F(2) F(3), that is
B = 0O~ 0T, o sy = O ~ 0T (19)
We shall note that the assumption Eg. (16) is valid only for the stellar
separations that are not too small. For small separations, ¢;; can become
arbitrary large; within the usual approximation where the formation of
binaries is neglected, the short separation divergence can be treated by
introducing a cut-off.
Neglecting the terms in g(1, 2, 3) and the terms

- 1 8 1 9
Vigw . (H; 31?1 M, 6’1?2) G(1, 2)

in Eq. (10) since they appear in higher order in € in Eq. (15), we find that
Egs. (9) and (10) become a closed pair of equations for F and G.

'a’+;1'61+nkl’*a—-' F(1)
ot o, ih
= 1 g 0 _ 1 g .0
= HI<_M1_ 1 @12 ® . M, 1 @iz a—

1 Vs

) G(1, 2)dp; dg, »
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Kl = . - a
[*6:'—+U1-V1+020V2+1’1 (K -vé ‘+K2 ayz):'G(l 2)

Uy
= N T 3
2
+n 3 aam FG) + ¥ fqo.a G 3) dpsdas -

The left-hand side of Eq. (17) gives the stream and the Vlasov terms, and
the right-hand side yields the correlation or collective effects. The terms
containing K; and K, on the left-hand side of Eq. (18) come from the
three-particle effects.

The procedures which are developed above are familiar from plasma
theory, As we know in plasma theory, it is a good approximation to
consider the system as spatially homogeneous, because of the short range
interaction due to the Debye-Hiickel screening which is responsible for the
long-range divergence. In this case, the 7+ V, term and the Vlasov term
in Eq. (17) vanish. The two terms containing K; and K, in Eq. (18) also
vanish. Then Eq. (18) can be solved explicity.

But in the gravitational system, unlike the plasma, there is no tendency
toward homogeneity, so that the inhomogeneity cannot be ignored, and the
self-gravitational field always plays a dominant role. This leads us to use
an alternative approximation by omitting the collective effect terms

"3, 8y gy T+ s [0 Gl 3)dasdp

in Eq. (18). They will not be important in a stable system, just as the
vibration modes, being too strongly damped, are not significant in the colli-
sional processes of a non-rotating system®>, The field terms K(g;, f) which
appear in Egs. (17) and (18) can be understood by the following argument.
In a few crossing times #, = L,/v, the cluster will undergo the evolution
from the violent mixing stage to the slow and smooth secular stage. The
self-consistent field K(g;, ) will also approach the mean field K(q‘, H=

which varies only on the secular time scale f,. So, in the mtermedlate
kinetic stage (¢, < t;) which is of interest here, the mean field I—{—. can be

treated as a stationary field of spatial variation f(_(c}‘., 1) = K(q) .
Therefore, Eqs. (17) and (18) become the reduced form
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§ - - ==
(_at_ + v,V + nK(q‘) . —aa_.-) F(])

; R ) @
= - —ﬁ? = = nv L = G 1: 2 d d ’
n J‘[Mi 1 @1z a0, M, V1 @1z o, ] ( ) dp: dg;
Fg . = & o o - D | ur 8
i Ve ra (KGe L G o )} G(l, 2)
ov, v, (20)

= | [
=Viou (3t 5o = a5 55 ) FOFD:

22

If we use the velocity variable 2;, instead of the momentum variable P;,
and the velocity distribution functions f, f;, ---, instead of the reduced
distribution functions. F;, F,, ---, in Egs. (19) and (20), the connections
between these functions are given by

fi%, ¥, tydw = nFig, p, 1) d°p, @n
fZ(;Ia 51! ;25 az; I) dsvl da”z = ng FZ (EI.D Ela ‘;2: };2: [) dspl dspz . (22)

Here, we use ;c,-, instead of ?;;, to represent the position variable. Define
the particle interaction operator 0,; by

= B0, 0, Doy 0
ox; Op  Ox; Op; 23)

= (Vigi) * 055
where
U T B T
i oy, M g
and the linear, time-independent operator f; in the mean field by

Li= 5;‘ . 6.‘ + k(}s) . —a-'»— s where 6;‘ =: E?. ~»
ov; o B

Then, from Egs. (19) and (20) the kinetic equations for the weakly coupled

encounter become

(gt_ 4 ng) (1) = fdf:z dxs 01z g(1, 2) e

and
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(T + 24+ 24) 91, ) = 0 ) AD) - 25)
Now
) =00 U 05 Q) =[5 ¥ 1),

g(l, 2) = glxy, vy, Xz 3, 1),

IV. THE NON-MARKOVIAN EVOLUTION EQUATIONS

For the free uncorrelated motion in the mean field, the solution of the

Liouville equation can be written formally:
f(;f! 1_).5, t) = ed'g‘.’f(-;is 51’! 0) _— e-'g"‘}(;i! 2-';1'! I) . (26)
The meaning of Eq. (26) is that the value of f at ¢ when the phase of

the system is x;, v;, is the same as that when the phase is e=Zit x;, e=Lit v; .

The formal solution of Eq. (25) can be written:

g(1, 2) = emtLyvdy g(1, 2, t = 0)

% ” (27
+ 8"‘('21"'"92)‘[: dr 0y, e—r{£1+ﬂ?1f(1= t—7)f(2, ¢t —7) ertlitly
0
Substituting Eq. (27) into Eq. (24), we obtain the evolution equation
7 0 -
(g¢ +L0A) =2t 5 f(1, 1)
(28)

= D(1, £) + e~t(Ly+ Ly J"D' dv fdfzdammﬁu, t— B2t — O,
where

D1, 1) = fom e+ Ly g(1, 2, t = 0)dx, vy, (29)
Agg = 01y e L1+ Ly, oLy vy (30)

Equation (28) shows very clearly how the effect of the initial condition at
time ¢ =0 (D(1, 1)) and the effect of the correlation A;; at all times 7 < ¢
are propagated toward time ¢. It is seen that only the behavior of the
correlation at times = earlier than ¢ can influence the value of f(1) at
time #. This is the so-called non-Markovian relation.

In order to take the delocalization effects into account, we can rewrite
the collision operator by using the properties of the & function, as
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Ay B, je-r(£{+££) _8_‘49_1?;("_") N VR
ar 31)

x 8(x] — X) 80! — ) 8(x} — Xz) 80} — vs) dx! dx} dv] dv},

where

)

Bt

H=xl-xt, Vi=

and
= eV 4+ Fitye O
av!
The mean field }—((J?:) which varies on the scale L; can be taken as
uniform in the limit of stellar separations r, € L;, r, being a characteristic
distance over which the field variation can be ignored. In the stellar en-
counter, we may expect that the major contribution to the collision term
comes from the proximate pair separation r such that r <r, €« L;. The
small contribution which comes from distant stars should affect the mean
field as an error. This approximative treatment of the field constitutes
a proximate encounter approximation which is suggested by Severne and
Haggerty*®, This approximation concerns only the treatment of the corre-
lations.
With this assumption, it is possible to take the mean field fi’a,; as
uniform in the collision operator A,,. Thus, it is easily shown that Egq.

(31) becomes

! 5
My J‘e-{'r(n{-ué)-alarf] ,6,‘-%2;(”;), % B 2 ) (32)
where
vli = 61 = 62 .

Therefore, Eq. (28) can be written as

00 0D _piy ) 4 [dsvds, [ar a7 - Gy —
‘ 2 % (33)
% ;’,fa A, Ty e L2t f(1, t — ) f(2 1 — 7)),

with
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A(r, T) = 87 0,5(r) (e=7¥12+37%7) [ Ouo(r) + 7 ¢, “Vw],
or 4 (34

LA Bip1s B 4 il P
r=2Xx, — Xz, 512(f)=-g-7- o012, Vg =V — Vs
r

In our finite system, we assume that the cluster is contained in a sphere
of radius given in order of magnitude by the Jeans length L,. With this
natural cut-off, one could write

7%= x| for x, <Ly and x; < L;, 35)

0 for x, or x; > L;,

(,012“;1—;2”:{

where 7 = — GM, M,. This idealized 1/r potential with a cut-off at

r=L; can realistically be replaced by the screened potential (just as the

Debye potential in plasma)

il 2
@1(r) = 1 - == where k= v

Equations (33) and (34) are to be integrated by use of the Laplace transform
2

in ¢ and the Fourier transform in r. The Fourier integral transform ¢f

of the potential is

1 \2 = = 1
pie = ( 272?) J‘_m Pra(r) e~ier dr = -2;2 F R (36)
o - i;—;
ou) = [dagh e = [dg 5T G7)
and the Laplace transformation is
o) = “'Z e gD, Be) = fu dt ei* O(r) . 38)

The contour for the z-integration is a line antiparallel to and just above
the real axis.

Here, in the non-uniform system, we use / and (/ — g) to represent
two different wave vectors associated with the interaction energy. Therefore,
the Fourier integral transforms become

eitr”

o) = [l gt 67 = [al e iy i

ei =7

12) i £=a Hi( -qu_._ —_ R el 0
g (r) = J‘d(ﬁ Q)Gﬂ gite J‘d(é q) 27; (7 — q¢ + k2] i
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Substituting Egs. (39) and (40) and applying the Laplace transform into Eq.

(34), the collision operator can be written as

A7) = f— B2 g-ter Lw dv el AP, 7)

d. . o . b (2)
— J"TQ,EE e izt J’; drt eiz® 8n® __(013_.(") V (41)

or

. — ( (1)
o Oyp @7 12°878r ]:.?‘lp_;}_).(_rl o0 + ( 6@;’ (3] ) {I )
r

Using
(2) m = L, = ) e
Ls: Jﬂff(ﬂ — Q) i(L — q) pis* €=,
6r
(1) Ll e
_8(013.'7 = Idﬁ I-e 401!2 eitr "
ar
and
J‘ dz e':r(l :112-“3) s 1___
9 I(E . ?)12 —z)

Eq. (41) becomes

AG, 7 = [ & et [l - il — D T

9 { Jatit gt B [az ot : % } i
® O l(f;v;ar—;; eilss = 711: (¢] l(.:ﬁﬁ., P * Vi |-
Then it is easily shown that
AG, ) = [I emine [dgeivisn [al ol (0~
e (v Tl [ 0 P zz.e] 43
12 7 1 12 v —2) @i | (43)
a ﬂ_d; emizt Jﬂdq elq ¥ A (Z) .
where
7 ) -
A=(z) = 8n® | d{ 7:.( = o O —— X
(Sl 2@ -t + k] (Fevu-2)

L g : N g RS i
[271’(122 Ty e e TR 6 V”] ¢4

— 7900 {f® — §I0]+ 8y — S — gI0)/02] + Via} .
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Here, we introduce the integrated form of the tensor quantities

= 2 (Z)
oo e s el MENO Ry 0T W
@ = g JaI Govu—2) -+ K+ " e

Therefore, from Eq. (43), the non-Markovian evolution equation (33) becomes

-0 Of(L, 1) i J" dr dz
5L S S LT SR -+ i _ eizr
e~L£yt ot D(l, l) fde dvz o 87t -2 e ( )

x fd&efE-Gl-?z) A:(@) e Lt LD (1, t — )2, 1 — 7).

Then Eqgs. (44) and (46) provide a corrective description of the evolution
of the system.

V. THE CALCULATION OF THE INTEGRATED FORM
I'™(z) AND THE COLLISION OPERATOR /(2)

Consider now the function I(z), defined by Eq. (45). This function
is a typical Cauchy integral. One of its main properties is the fact that it
represents two different functions, according to whether the complex variable
z lies in the upper or in the lower half-plane; these two functions will be
called I* and oo~ respectively. Each of them is regular in the domain
of its original definition. However, 1"~ is not the analytical continuation
of Itm*, there is a discontinuity along the whole real axis. On the other
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Fig. 1. Cylindrical Polar Coordinates for Wave Vectors £ and q
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hand, the function I¢™* can in general be continued analytically into the
lower half-plane. The function Imw*(z) thus defined in the whole complex
plane necessarily will have singularities in the lower half-plane.

The calculation is particularly convenient in a reference system (x, y, z)
in which the z-axis is directed along the vector vy;. The calculation may
then be performed by using cylindrical coordinates. The cylindrical polar
coordinates for ¢ are £, = A, b and ¢. For simplicity and practicability,
we may assume that qT is also along the z-axis (see Fig. 1).

From parity arguments we know that the tensor Im* s diagonal in
this reference system, and that, moreover, the xx and yy components are
equal.

Now, let us evaluate 1((z), and introduce the notation
19(2) = I0(2) (8s + £,) + I) L,
=0+ 1%, £, =bsing, L.= 1.
From Eq. (45), it becomes

= 2 = 1
g e I =S ;
@ = S G G T ek o+

IR N

47

The integral over ¢ in Eq. (47) is logarithmically divergent at the
upper limit. This divergence for f — oo is a short-distance divergence.
Such behavior can be shown to be general for the potential which becomes
infinite at very short distances (p(r) — oo as r-—»0). We shall treat this
difficulty much more roughly, by cutting off the domain of integration at a
value Fma.x = Ly. Now, we discuss a reasonable value for the choice of
the cut-off /£, ., although there is a certain arbitrariness in this choice.
As the physical reason for the divergence at the upper limit is the strong
interaction at short distances, we have to eliminate very close encounters,
which produce large deflections. We may set a limit of weak deflection
at 90°. It can be shown from a simple analysis of the dynamics of a
collision®® that such a deflection occurs when the potential energy at a
distance equal to the impact parameter Ly, equals twice the original
kinetic energy:

2 ( M, M ),U?z gttt

M, + M, 2 = ) S (— GM, M;). (48)
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Since presumably Lz! » k, the exponential factor approximately equals 1.
From Eq. (48) we obtain Ly, = G(M; + M;)/v%, . We then choose for £y

2w 2w v,
B S . Y 49
iy Sl S A e

With this cut off at ¢ = ¢, , we can write I(z) and I{(z) from Eq. (47)
as
2" = 1
190 = 2 (" an (™ bab
T -0 ;w 12 Z 0 (50)

J‘ db bsing
B+ + R+ @ — g + T

2 1 (o
@)= 2 (" ar b [ e

Avys — z
2z A
xJ; @ F+E+EF + A - + &1 51
2 (™ & 1 1 S
ST ) Mg =z qlg=24)

2 2 2 2 2

2+ A2+ Kk A2 4+ k
x| toe 5 = — 8 = ar s

From Eq. (49), k/fy~N3;' < 1, and on the average {g> ~ O(k), thus

{gy/Ly ~ N3' « 1. Then the first term in the integrand leads to log 1 = 0.

So, Eq. (51) becomes

t 2 z A 4 kP
I¢(z) = j di 1+ /lvm-—z) q(q 2&) log - (T s
=2 (G o+ )
where we introduce the integrated form J, and J; as
wic L BB 1 A4 k2
o= —=) A% q(2?l e o e U L
o A% 4 k2
=g S g =g o s e 54
Similarly, from Eq. (45), we can write I®(z) as
2 27
1®(z di - 5 55
B = J‘ v,z -z (E2 + kY[ - qF + k*‘] (%
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and
19(z) = I}*’(Z)(L’A,,tf’.A_r + £,8) + IP(z) 2.é,. (56)
Therefore,
2
I$(z) = f Avw s " bab
&= b? sin? ¢
xf “t#+ze R + (3 — aF + KT
1 AR+ KP A24-k?
B J‘ Av,z —z qlg— F=20) (‘1i'q)zjkz’ (57)
1 1 Ly + k+(A—qf
Sl B ey e ey
= (kg'l"zf) Jo — (Jz—l‘"**-f) + Js
Uiy ’ Vg 3
We introduce the integrated form J, and J; as
L At 4 K
= T e q(z,l 105 [(A—af +k1° (58)
A 1w A g
=g I_w d4 T — 2 log A =g+ Kk (59)
where
ut =0+ k.
For the terms I{(z), we can write
IP(z) = -—.2— f:; Ty f bdb
2r
f dp b+ 4+ kz][bz Y N Ry (60)

=25 B+ 2 d+ 20

12

Now, we only need to calculate Jo, Ji, J., and Jy, respectively. We first
calculate J; from Eq. (59). The integration over A can be performed by
the method of residues. The integrand has a pole at z/vy, and four branch
points at A=g+ik and A =g +ix. We now complete the real axis
with a half-circle at infinity in the lower half-plane; we must, however
avoid the two branch points by making a cut. This leads to the contour
of Fig. 2.
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I

"

o 3V

Fig. 2. The Contour for the Integration of J;

As there is no pole within the contour, and as the large half-circle and the
small circles around the branch points do not contribute, we finally obtain

o ek J‘“'“’_ q'”’} = el 2 ol Gl 7
. i { ol q-in e AV — 2 e (A—gf +k

wy @ (61)
RETNEEY X PO P Y T
Uiz Z— gV + kv et Z—gety +ikvgp

since
Kfly ~ON7Y €1, o=/ 05 + k% ~Ly.
Next, we calculate J, from Eq. (53). The integrand has poles at z/v,

and g/2, and four branch points at A= + ik and A = g + ik. This leads

us to obtain

2L 17 T kv (62)

=

&= e =
q(2z — g vy) Z—qety+ikvg,

Similarly, we can perform the same method to obtain

Fymis B L gy G0 Vg b Ii0G. (63)
gV — gV + 2ik vy,

| QRSR[5 T (64)
201 — g Vs + 2ik vy

Therefore, from Egs. (52)-(64), we can obtain the result of the integrals
I® and J® . Then the collision operator A,(z) (Eq. (44)) can be conipletely

evaluated,
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Among Jy, Ji. Jy, and J,, only J, contains the term log £y which is
the asymptotically dominant contribution. The term I — gI®™ in Eq.

(44) can be written as
im i t}ﬁ” . Ja(fzﬁ; & Eyéy) = I:(kz = #) Jo+ (Jz + = Jl )]

Gl + 8,0 + 19 0.0, — q1P() L. (65)

_ 2m fog - &g Digh iy Vs (d— 8.0+ KR),
Uiz Z—q'7)12+lkﬂig
where I(R) represents all other terms except Jy in Eq. (65), and [ is the
unit tensor. Therefore, from Eq. (44), we have

&

<= Q:Em + ig_._@.[ Uiz (ivﬂ o ng Um ) .0
s — 1
Z—gety + kv vz (66)

A- (Z) 2612 . log
i /T;(Z) s

where A_;(z) represents the collision operator associated with I(R) of Eg.
(65) and the terms — i[0(I'® — gI®)/8z] of Eg. (44).
The inverse Laplace transform A;(r) can be obtained from Eq. (66),

Z‘—q vl2 + iﬂuﬂu
Z—Q'Ulz'!'lkvm

17)2_‘1"1 vz dz -|zf -.

e |
Pl ethin - - [e~tr1er — e~in?ne7]

2 az’ i
Az (7)) = Ve T%01 ¢ J‘:"z"* log =

Vyz

(Iﬂfz 7'5?7;12&2_) oy e J‘__dg;z emiz A_;(Z) .
The first terms in Eq. (67) are damped out faster than a time of the order
of the crossing time 17, = 1/kv,;, because of the term e~*w"/z. In
/T;»(z), only J, has z-dependence. Therefore, only the time terms e™*'12°
and e~iviz¢ can appear in the second term of Eq. (67). Clearly, this term
also decays on the time scale 7.. So A7) approaches zero as 7 »f..
This is also true for D(l, t), for practically any hypotheses we might make
regarding the initial correlations (D(1, )0 as 7> 1).
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For time ¢ » t,, the effect of memorizing the history of the system
no longer appears, Eq. (46) will become the Markovian relation, and the
time integral can be extended to infinity. Then it is easily shown that Eq.
(46) becomes

3] 0
[ at 40,0V, + K1 . ’a-’-’}f(l)

vy
1 5o s s -
= gve [@hedi, [diei G 4;60) (D A2) + 0, (68)
where

A:(i0) = lim d-r eiz A,(7),

2=+i0

and O(A;) denotes the integral associated with A-(z).
From Egq. (66), we obtain
e at
Aq—(iO) — 7205 » log RIATRUT —_c.]' vlz (L”m——'z”l_z__yi_z‘ .« Oy
ikvi, —qevy Via
+ A_;(z‘O) : (69)

= 2% 12, tog e (-’—””—;2”“”‘”) « i + A= (i0).

Here we use the weak couplmg approximation Eq (49) and <{g> ~ O(k)
So, Eq. (69) is independent of q.
Finally, from Eqgs. (68) and (69), the weakly coupled kinetic equation
of nonuniform stellar systems takes on the form
Y
[w + 0o Vi + K e *a;.:]f(l)
£ o Fol — 0,50 70
= 47% y* log “]g" jdxg dvy 8(x; — X3) Oz (_,, 2E r?z’ifgrigi 2L ) (70)
« 04 f(1) f2) + O(T3) .

V. CONCLUSION

In the infinite homogeneous system, the kinetic equations generally have
very simple interpretations in terms of the “golden rule”, using dynamically
shielded potentials, or in terms of the Boltzmann equation. But in the
inhomogeneous system, the resulting equations are quite difficult to interpret,
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even though we can show that the inhomogeneous system does have many
of the characteristics of the homogeneous system‘®.

A basic inadequacy of describing the stellar encounter in the infinite
homogeneous medium is revealed by the fact that the scattering cross-section
is divergent at long distances due to the long-range gravitational interaction.
In our finite system, the linear dimension L, provides a natural cut-off to
prevent the divergence and we replace the true gravitational potential by a
screened potential ¢(r). On the other hand, at very short distances, where
the interactions become very large, the divergence also shows up. We may
set a limit of weak deflection at 90° to introduce a cut-off Ln,. (Eq. (49)).
This approximation of ignoring the close collision effects is reasonable for
the gravitational force.

In the collision operator A;,, the mean field If(f,f was taken as uniform
in the proximate encounter approximation®® where the major contribution
to the collision term comes from the proximate pair separation r such that
r<r, €Ly, and the classical description of encounters is shown to be
valid in the limit log (£y/k) = log N, ~log N » 1, where N is the popu-
lation of the system.

The methods which we used in calculating the collision operator A,
were the familiar Fourier-Laplace transforms and contour integrations. These
simple techniques provide us an easier way to handle those already com-
plicated problems in the nonuniform system.

As discussed in section II, there are three relaxation stages in our
system such that 1, <1, <1, due to the weakly coupled nature of the
system. Hence, to a good approximation the secular evolution stage can be
ignored in our kinetic description of the intermediate kinetic stage which
is characterized by a local Maxwellian velocity distribution. The theory of
the slow secular evolution stage which is governed by the hydrodynamical
equations remains a very interesting problem yet to be explored.
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A MICROPROCESSOR-BASED CHINESE SYSTEM

YEONG-WEN HWANG

ABSTRACT

A Chinese system is implemented on an Intel micro-
processor demanding only a 12K bytes memory. Cost reduc-
tion by a decade is readily realizable. The GCS (Geometrical
Component System) is especially suitable for the microprocessor
due to the extremely small memory capacity needed and the
avoidance of disk usage during Chinese I/O, so that low speed
diskettes may be used.

The paper shows two models: one on MDS and one on
SBC. The former is a stand-alone system having diskettes and
an editor for Chinese data files. The latter is a terminal-
equivalent slave system of extremely low cost for outputting
Chinese as sent from another computer. The sent output is in
component code form rather than in pattern form. Therefore
the communication speed is greatly improved. The Chinese
program is pre-stored in PROM and the PROM module may
be plugged-in in both models. Samples of output on TV and
printer are shown.

The rise of microprocessors offers a great opportunity for the efficient

implementation of a Chinese system. Not only is a decade reduction of cost

easily realized, but a significant step toward a universal means of Chinese

data manipulation in all computers can now be taken.

The cost reduction

is an urgent requirement due to the expensiveness of equipments and CPU

times of present Chinese systems.
The geometrical component system (hereafter abbreviated as GCS)t

fits into this line very well. Two main reasons may be stated:

1

A little more clarification of the above two reasons seems helpful.

GCS needs less than 12K bytes memory space for the overall system,

and this is easily provided by read only memory or RAM in a

miCroprocessor.

GCS needs no disk operation at all in doing Chinese 1/O. Therefore
low speed diskettes which are commonly used in microprocessors

play a satisfactory role in GCS.

It

is well known that a huge memory space is required if the patterns for tens
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of thousands of existing Chinese characters are to be stored. The memory
price is still too high, even with developments to be expected over the next
few years, for such a storage to be economically feasible. Besides, hardware
capacity and complexity are problems. GCS skips these patterns by com-
posing them from simple components.

Secondly, cartridge disks, disk packs or similar devices, as they are
designed to be accessed occasionally in file management, are overburdened
by the irregularly frequent access (ranging from several times per character
to once per several characters) if the character patterns are stored on disk.
A disk pack used in such an input/output environment may wear out in
just few months. ;

In this paper, the GCS Chinese system using an Intel 8080 microprocessor
will be presented. It is implemented in two different models. One operates
under Intel microprocessor developing system (MDS) and is a stand-alone
Chinese system. Another is implemented in a “single board” type and is
to be called by another computer.

The MDS model is as shown in Fig. 1. An Intel MDS-800 with dual
diskette drivers is utilized. The implemented system has a 32K bytes RAM
memory, but a 16K size may also be used. The diskettes are used for file

component
keyboard

management only.

microprocessor

MDS
Chinese I/0

printer handler television
Chincse daglay
Editor

s

dual diskettes l
m for files

Fig. 1. System using Intel MDS.

The Chinese component keyboard® has 256 keys used for component
keying-in. The printer is a K2000 impact dot-matrix type capable of making
5 copies. Character size is 16 x16. A tape reader may be used to read in

Chinese files or data.
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“So much science in the past has produced unpleasant results
like pollution and nuclear bombs and germ warfare, that people
are frightened of the next breakthrough.”

D.J. R. BRUCKNER

“Peaceful use of atomic energy and real disarmament could
make the earth the paradise it ought to be, if people would
permit it.”

ERNEST O. LAWRENCE

“Science inspires us with a feeling of hopefulness and infinite
possibility.”

I.1. RABI
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THE STABLE EQUILIBRIUM CONDITION FOR
A CLOSED ISOMETRICAL SYSTEM OF
COEXISTING LIQUID AND
YAPOR PHASES SEPARATED BY
A SPHERICAL INTERFACE

ARTHUR JING-MIN YANG

I. INTRODUCTION

Surface phenomena have always been an attractive topic in the field of
physical chemistry. Due to the surface effect, the thermodynamics for a
small system is very different from that of large systems. In order to
understand more about surface thermodynamics, a great deal of work has
been done on the microscopic theory of interfaces®~7.,

In a previous paper® we provided a microscopic theory for a liquid-
vapor interface. We showed that the three dimensional equilibrium density
function, a function which extremizes the Helmholtz free energy of the
system, satisfies a differential form of the Young-Laplace® equation for the
pressure variation across a spherical interface. In that paper we only knew
that the density function we obtained extremized the free energy; therefore,
whether or not such a system is at a stable equilibrium was not determined.

In nucleation theory the Young-Laplace radius is considered as the
critical nucleation size for a given temperature. This means that the equili-
brium is unstable. In the absence of an external field, a two-phase system
in stable equilibrium should also have a spherical interface, as dictated by
spatial isotropy. Therefore, for the equilibrium between two phases separated
by a spherical interface, the stability of the equilibrium is not clearly
known.

In this paper we shall present a purely thermodynamic approach to
discuss the stability of the equilibrium in a closed system at constant tem-
perature and volume. The thermodynamic constraints of constant volume
and number of particles are essential, because we know that the surface
effect varies with the size of the system. The stability of the small system
depends very much on the surface effect. We wish to derive the condition
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for a stable equilibrium and also to study the dependence of the stability
on the size of the system.

In section II, a general discussion of the equilibrium between liquid and
vapor phases is introduced. We summarize thermal, mechanical, and diffusive
equilibrium conditions by using three equations. In section III, we determine
the stability of the system by considering the influence of small fluctuations on
some physical properties of the system. The stable equilibrium condition is
derived for a liquid drop in a vapor phase. In section IV, we use the
physical constants of water at 293°K to do some calculations and estimate
the influence of the system size on the stability of the equilibrium. The
conclusion we obtain from the calculation is that whether a liquid drop of
fixed radius r is at a stable equilibrium or not is determined by the total
amount of the vapor phase in the system. Or, in other words, the stability
of this kind of equilibrium is dependent on the size of the system.

II. GENERAL DISCUSSION OF THE EQUILIBRIUM
BETWEEN VAPOR AND LIQUID PHASES

In a one component system containing two phases, a vapor phase and
a liquid phase, there are three thermodynamic requirements for the existence
of equilibrium. For thermal equilibrium the temperatures of two phases
must be equal, and for diffusive equilibrium (or chemical equilibrium) the
chemical potentials must be equal. The mechanical equilibrium in general
can be described by the equation of Young and Laplace®, i.e, for a

spherical interface

pr_pr =2 :
r
where P is the pressure of the inside phase and P’ is the pressure of the
outside phase, r is the radius of curvature, and ¢ is the interfacial tension.
For a general interface characterized by two radii of curvature, r; and r;

at any point

For a system which has coexisting vapor and liquid phases separated by a
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spherical interface, these three thermodynamic equilibrium conditions can be
summarized as follows

TG = TE, y% = u¥, where G indicates the gas phase and L the liquid
phase, and

PL _ pe — —2;_1 (a liquid drop in a uniform vapor phase),
or

P? — Pt = —%:; (a vapor bubble in a uniform liquid phase).

At a certain temperature T below the critical temperature, the pressure-
density isotherm of one component displays a two-phase region as shown in
Fig. 1. The dashed lines are the extrapolation of the curve from the one
phase region and represent the metastable or the supersaturated states. From
the Maxwell relation we can derive the relation dP = pdy, where p is the
number density, and thus obtain a chemical potential density isotherm which
also displays a two phase region (Fig. 2).

P /h
{7
e Pp)
7,
If.
/]
£
TWO-PHASE ’ I
REGION I
!
| \; P
Fig. 1. The pressure density isotherm of a one component system

at a temperature below critical temperature.

At P equal to P,, where P, is generally known as the normal vapor
pressure of the component at temperature T, the equilibrium conditions are
given by T¢ = T% ub = p4* = 4 and P% = P = P>, where u° is generally
called the coexisting chemical. This corresponds to a system which has a
planar interface between the vapor and liquid phases. At some states with
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chemical potentials other than g°, there may exist an equilibrium between
a stable state and a metastable state both states having the same chemical
potential but different pressures. The pressure difference between these two
states, PL — P, is equal to the integral

[ @2~ oo)dn
®

and is shown as the shaded area in Fig. 2. In this situation the two phases
can still reach a mechanical equilibrium as long as one phase, the high
pressure one, assumes a spherical shape of radius r such that P* — P! = 2d/r.
Therefore the system which has two coexisting phases with the chemical x
greater than w° corresponds to a liquid drop in a uniform vapor phase, and
the coexisting phases with the chemical potential x less than p° corresponds
to a vapor bubble in a uniform liquid phase(®.

3}
Fig. 2. The chemical potential density isotherm of a one component

system at a temperature below critical temperature.

For the cases just discussed, although all three equilibrium conditions
are satisfied, we still do not know whether or not such an equilibrium is
stable. In most condensation theories the Young-Laplace radius r for the
mechanical equilibrium P?7 — P! = 2¢/r is considered as the critical radius
for nucleation at a given temperature, and apparently the equilibrium is

considered to be unstable. Suppose that a closed system of a liquid drop
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of radius r in a uniform vapor phase, at fixed volume ¥ and temperature
T, is at this kind of unstable equilibrium. The liquid drop then starts
growing, and due to the finite amount of the vapor phase in this volume,
the growing process has to stop at some point where the liquid drop has a
radius #/. At this stage the equilibrium is apparently stable. It seems that
for a closed system at fixed volume and temperature, if there exists a Young
Laplace radius r which corresponds to an unstable equilibrium, then there
is another Young-Laplace radius r/, ' > r, which corresponds to a stable
equilibrium. This is what is actually observed in the Wilson cloud chamber.
In the next section we discuss the stability of this kind of equilibrium and
derive the condition of stable equilibrium for a closed system with fixed

temperature and volume.

III. THE STABLE EQUILIBRIUM CONDITION FOR A
CLOSED SYSTEM AT FIXED TEMPERATURE
AND VOLUME

To discuss the stability of the equilibrium we will first assume that the
system has a small fluctuation which changes some physical properties of
the system, and then examine the new values of these physical properties
to determine whether, after this fluctuation, the system will tend to return
to the equilibrium position or continue moving away from the equilibrium
position. Since the system is at a fixed temperature, we only need
to deal with variations of the chemical potential and the pressure of the
system.

The closed system has a particle conservaiicn condition which, in the

system we are discussing, will be that
4 4
o (V ~ - xr“) +0" 5 art=N, (111-1)

where p' is the density of the phase outside the sphere, and p” is the density
of the phase inside the sphere. If our system is a liquid drop in a uniform
vapor phase, then ¢’ is pg; and p” is gy, and at equilibrium pg, 07, and r
must satisfy the following equations

bo(V = 5-7r) + ps3ar =N (ImI-2)
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tal0a) = pr(pr) (I11-3)
Pu(pr) — Polpe) = 22 (I11-4)

o
Here u5(0s) expresses the vapor chemical potential as a function of vapor
density pg at constant temperature, and z,, is the liquid chemical potential;
Pr(02), Pa(ps) are the liquid pressure and vapor pressure as functions of the
liquid density and vapor density respectively.

In order to simplify the argument, it is useful to assume that while the
system fluctuates one equilibrium condition, either the mechanical or the
diffusive, is maintained and then discuss the variation of the other one,
This is mathematically equivalent to solving a two-variable extremum problem
by fixing one variable at a constant and looking at the partial derivative
with respect to the other variable.

For the system of a liquid drop in a vapor phase we first assume the
mechanical equilibrium is maintained and the number of particles in each

phase fluctuates. We rewrite eq. (I11-2) as
Ng+ N =N

where Ng = po(V — 4/3 nr®), N, = p,(4/3 nr®), here Ny and N, are the total
number of particles in the vapor and liquid phases respectively. Evaluation

of the differential yields

dNG + dNL = 0.
Thus
0a(—4nr®)dr + (V — ;1 7rr3) dpg = — pr (4 wriydr . (I111-5)

The liquid has been considered as almost incompressible, and since V< 4/3 zr3,
4/3 nr* dp,, is negligibly small. Since the mechanical equilibrium is maintained,

equation (ITI-4) enables us to write

d(Pi— Py —22) =0 (111-6)

or, since dP = pdu, to obtain

2
prduz — padug =d(2). (I11-7)*

If we substitute the relation
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duo = (o) doo

into equation (III-7), we have

(tr, — tto) = ';L*{(PG 01) 8‘”” dog + d(—zf )} (T11-8)

We can see from equation (III-5) that

_ Aart (pg — po) dr E
dog = —5— 7 Bt (I11-9)
Thus if we assume that ¢ is practically constant as long as the temperature
of the system is not changed, we have

(0a Pr) T (ﬂo — or) 4mrt dr

A=l = e\ p gl

.%;dr} (111-10)
or, since dN, = p, (4xr?)dr, we obtain

2#
(0a — m.) o nrt) o

1
d(py — te) = mﬁ;z)—{ i = 4/37”3 el }dNL (TI-1)

We define the quantity M by

6#0
4zrt -
0pa 2da .
= (0¢ — 0.)* W=k T (111-12)

Since p(4nr?) is positive and if M is greater than zero, then

ez — o)

dNL > 07

which implies that if the fluctuation increases the number of particles of
the liquid phase, i.e. dN, > 0, the liquid phase will then have a higher
chemical potential than the vapor phase, and thus the system tends to go
back to the equilibrium through the diffusive process, i.e. the equilibrium
is a stable one. By the same argument we see that when M is negative,

d(ur — te)
dNL N < 05

" Due to the Ei.g-frincompressibility of the liqu.i&;‘uf, is not negligible even
though dpr, is negligibly small.
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and the equilibrium is then obviously an unstable one.
If we assume that the diffusive equilibrium is maintained and look at
the volume fluctuation, the argument is quite similar. Since the total volume

is a constant we have
dVy = — dVg = 4nrtdr (I11-13)

where V= 4/37zr* and Vg =V — 4/3mr* are the volumes of the vapor
and liquid phases respectively. While the volume fluctuates, the diffusive

equilibrium is maintained and therefore equation (ITI-3) gives
dur = dug.

Since we know dP=pdu, we obtain
2
(P, — Po~ i) (02, — Pe)dp — d( -]
20
= (b, — 0a) a = 2. dby ~ d(f;) ) (111-14)

The particle conservation condition still holds, and combining equation (I11-14)

with equation (III-3), yields

3,&5 dartos — 0z) 4 Eﬂ_ dr. (I1-15)

20
) = 1~ 5 V= 4/37rY)

Bl B 22

Substituting (III-13) into equation (I1I-15) we have

aﬂa
qrrt ——
20 1 0oa 20
4P = Pa = Z2) ~ — o {(0n — 0P 5= 455 — S}V
- L May, (I11-16)

where M is defined by equation (III-12),

At equilibrium Py, — Py=20/r; if the fluctuation makes d(P,— Pgz—20/r)>0,
indicating that after the fluctuation P — Ps > 20/r, the liquid phase is going
to expand and the vapor phase contracts. Thus we can see from equation
(III-16) that the equilibrium will be stable if M is positive and unstable if
M is negative. Just as we expected, the two different paths give the same
result.

We have obtained the condition for the system to be at a stable equili-
brium. One point we have to emphasize here is that our treatment is only



Fu Jen Studies T

for a system at fixed volume and temperature. If the system is open or
isobaric, equation (III-1) is no longer valid and therefore the argument will
be totally different. In the next section we use the physical constants of
water to determine the influence of the size of the system on the stability
of the system.

IV. THE INFLUENCE OF SYSTEM SIZE ON
THE STABILITY OF THE SYSTEM

We use the physical constants of water at 293°K to do the calculation.
In doing the calculation we adopt three reasonable approximations: (1) We
treat the vapor as an ideal gas; (2) we assume ¢ to be independent of the
radius r; (3) we neglect pg relative to p;. The following physical constants
of water are those needed for the calculation.

g 7.275x 102 N/m

or 55506 mole/m?
0% 0.95915 mole/m?
Py 17.535 torr “normal vapor pressure”

To calculate the vapor pressure of a liquid drop of radius r we use the

Kelvin equation‘®

P 20
tn(-ps) = RTorr° ¢y
or, since the vapor is ideal,
2¢
In( pg) - X (IV-2)

The results are shown in Table 1.

Table I. The minimum volume, V., of the equilibrium vapor
phase necessary to make the liquid drop of radius r
become unstable.

r A | 10: A 100 A 100 A 10° A ‘ 108 A
| |
og, mole/m® | 1.0681 | 0.96952 0.96018 |  0.95825 ! .9516
Ve, cm? 2.02x10-12] 2.23x10-8 | 2.26x10-4 | 2.32 | .33x104
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For the ideal gas, we know
dPG — RT dpg.

This, combined with the relation

dPg = pg dug,
gives
oug) _ RT :
(apa)r* og ' (=)

Therefore M can be expressed as

2
dnr RT 20 (IV-4)

M-t o ~F

For a liquid drop in equilibrium with a vapor phase of density oz we
can see from equation (IV-4) that the stability of the equilibrium depends
on the total volume. If we keep the vapor density at constant og, this will
also fix the equilibrium radius r, and increase the total amount of the vapor
phase, then it is very obvious that this process will decrease M and may
change the equilibrium from a stable one to an unstable one. For a liquid
drop of radius r, we define the critical volume, V¢, as the minimum volume
of the equilibrium vapor phase necessary to make the equilibrium become
unstable, or make M negative. We calculate the Vs for a liquid drop at
different radii and show the results in Table 1.

We can use the data shown in Table 1 to discuss the stability of a
system. For an appreciable supersaturation, the corresponding Young-Laplace
radius r is of the order 102 A to 10* A. Therefore, if the system is of an
ordinary size, from a few cubic centimeters to a few liters, the equilibrium
is apparently unstable. After growing in a closed system, the liquid drop
will have a radius which is greater than or approximately equal to 10° A.
Thus the equilibrium vapor pressure is almost exactly Py, and from data
shown in Table 1, it is clear that the volume of an ordinary size system is

less than Vg, and the system is at stable equilibrium.

V. DISCUSSION

In the preceding sections we have discussed in detail the stability of
the equilibrium between a liquid drop and a vapor phase. We concluded
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that a Young-Laplace radius can also be a stable equilibrium radius if the
phase outside the sphere is sufficiently small.

In this paper we have only discussed the stability for a closed system
at constant temperature and volume. For these constraints, a stable or
metastable equilibrium corresponds to a local minimum of the Helmholtz
free energy, and an unstable equilibrium corresponds to a local maximum.
In a subsequent paper we will explain the fact that for a definite Young-
Laplace radius, r, the stability is dependent on the size of the system by
studying the influence of the surface free energy on the total Helmholtz
free energy. We also will discuss the stability of a system at constant
temperature and pressure, or at constant temperature and chemical potential.
We hope that from this approach we can obtain some understanding, in the
field of statistical thermodynamics, of the canonical ensemble and grand

canonical ensemble of liquid-vapor coexisting systems.
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“Look around the world. Contemplate the whole and every
part of it. You will find it to be nothing but one great machine,
subdivided into an infinite number of lesser machines.”

DAVID HUME

“The big question men must face up to is: How many people
can the Earth support, and at what standard of living?”

IRVING BENGELSDORF

“Life is not complex. We are complex. Life is simple and the
simple thing is the right thing.”

OSCAR WILDE
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THE EFFECT OF EXTRACTION TEMPERATURE
AND ANTIOXIDANT ON THE
FLAVOR OF SOYMILK
AND
THE EFFECT OF FLAVORINGS ON
THE ACCEPTABILITY OF
SOYMILK PUDDING

YuH-RoNG CHOU

ABSTRACT

Soymilks were prepared by three different methods which
differ in the temperature of extraction and addition of antio-
xidant. Extraction at 60°C with added ascorbic acid as antio-
xidant produced a better soymilk than room temperature or
80°C extraction without added ascorbic acid. The yield of
soymilk decreased with increasing extraction temperature. When
soymilk was used for puddings with flavorings, the beany
flavor was very well covered and the products were highly
acceptable. Among them, chocolate gave the best flavor with
soymilk. As soybean is a cheap source of protein in many
Asian countries where cow’s milk or meat is very expensive,
it appears that soybean products have a great potential as sub-
stitutes for animal protein.

INTRODUCTION

The purpose of this study was to investigate the effect of temperature
and antioxidant upon the quality of soymilk, and to find out acceptable
flavorings for puddings made with soymilk.

Soybean and soybean products have played an important role for many
years as a source of protein in the diet of millions of people in Asia. They
are more important in the nutrition of these people than are wheat in the
U.S. or rye in Germany‘V. Soybean products are good sources not only of
protein, but of fat rich in linoleic acid, calcium, iron, thiamine and ribo-
flavin, though some of these nutrients are reduced or increased during pro-
cessing®, Miller efal.®¥ indicate a low retention of thiamine (1895) when
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soybeans are made into soybean curd and preserved in water by the usual
commercial process. They also indicate that the water drained from the
soybean curd contains more vitamins than the soybean curd. Jackson®
prepared soybean cheese using soybeans, skim milk powder, rennet, and lactic
starter cultures. He attempted to reduce the beany flavor but was unsuc-
cessful.

Soymilk prepared from soaked beans by a water extraction process has
been the conventional method practiced in the Orient for centuries. This
type of soymilk is usually too rancid in flavor for acceptance as a product
in most countries®®. The rapid formation of rancid flavors occurred almost
instantly during the grinding of soybeans with water and was shown to be
due to oxidation of polyunsaturated fats catalyzed by lipoxidases(®.

A high temperature, rapid hydration grinding process inactivated the
lipoxidase system and produced a nearly bland soymilk. Wilkens et al.(®
reported that an acceptable bland soymilk was produced by grinding at
temperatures between 80° and 100°C and maintaining the temperature for 10
minutes to completely inactivate the lipoxidase enzyme. Lower temperatures
in the range of 60 to 80°C can be used, if sufficient antioxidants are added
to the water.

Although high extraction temperatures were shown to be desirable in
producing a relatively rancid-free milk, the use of temperatures above 85°C
for extraction would also result in substantial losses in yields‘™. The decrease
in volume at high temperatures is caused by difficulties in filtering the slurry.
This is due to the formation of a gel that formed an impervious layer on
the filter and prevented efficient filtration®. Wilkens et al.®® reported that
soaking at higher temperatures drastically reduced the yield of soymilk.
According to these workers, although maximum solids are extracted at 50
to 70°C, with a decrease in solids at higher temperatures, a minimum tem-
perature of 80°C should be employed at the initiation of grinding to prevent
off-flavor development.

It is especially interesting that the protein from the insoluble residue,
discarded in the water extract method for making soymilk, is actually superior
in its protein efficiency ratio to the milk itself*®. The protein residue may
be dried for utilization after adequate heat treatment as a cereal-like product®®,

The flavor of soymilk is greatly enhanced by adding some flavorings.
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Steinkraus ef al.'® reported the development of flavored soymilk and soy/
coconut milk with flavors acceptable to children in the Philippines. They
used various amounts of sucrose, vanilla, coconut milk and chocolate, and
the products were highly acceptable. In Hong Kong, Vitasoy, produced by
the Hong Kong Soya Bean Product Co., Ltd., has been the largest single
seller in the local soft drink market when such internationally known brands
as Coca Cola, Pepsi Cola, and Seven Up were competing with it®.
Soymilk could also be useful as a low-methinoine substitute for cow’s

milk in the dietary therapy of metabolic disorders such as homocystinuria

and cystinosis®,

MATERIALS AND METHODS
A. Preparation of Soymilk

Tainung No. 4 soybeans were used throughout the experiment.

Ingredients:
Soaked soybean 100 g.
Blending water 400 g.
Product A 0.159% sodium bicarbonate solution (24°C)*
Product B 0.15% sodium bicarbonate solution (80°C)
Product C 0.159 sodium bicarbonate and 0.1% ascorbic acid
solution (60°C)

Sugar 40 g.
Salt 3.
Vanilla 0.5g.

*Steinkraus et al. ' reported that the taste panel was unanimous in pre-
ferring soymilks containing 0.15% NaHCO; to those containing no sodium
bicarbonate.

Equipment:
1 Quart Tatung blender
1 1. Volumetric flask
500 ml. Graduate cylinder
3 450 ml. Beakers
3 Rubber spatulas
1 Thermometer
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3 Medium size aluminum sauce pans

3 Medium size pyrex bowls

1 Large wire strainer

1 Small wire strainer

1 Cheese cloth

1 Toledo balance

1 Top-loading Mettler balance

Procedures:

1. Dry soybeans were carefully washed and sorted to remove dirt and
damaged beans.

2. The soybeans were soaked for 10 hours in 3 times their weight of
0.195 sodium hydroxide solution.**

3. The soybeans were drained and rinsed.

4. The soybeans were blended with variable blending solutions for 3
minutes at high speed.

5. The soybean slurry was filtered through three folds of cheese cloth.

6. Sugar and salt were added.

7. The extract was heated carefully with stirring at medium heat until
the boiling point was reached (10 minutes).

8. Soymilk was cooled to room temperature and vanilla was added.

9. The yields of milks were weighed and the pH of each was measured.

**Steinkraus eral.!» reported that the taste panel was unanimous in pre-
ferring soymilks prepared from Taichung soybeans soaked in dilute alkali
(0.1%5 NaOH) to those soaked in water.

B. Preparation of Pudding

Four different kinds of commercially prepared pudding mixes (Jello) were
used for the preparation of pudding: vanilla, lemon, butterscotch and cho-
colate. Soymilk was prepared fresh for each trial by the method used for
product C in previous experiment.

Ingredients:
Pudding mix 95g. (1 package)
A Vanilla
B Lemon
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C Butterscotch
D Chocolate
Soymilk 488 g. (2 cups)
Equipment:
4 600 ml. Beakers
2 Rubber spatulas
2 Glass double boilers
16 Custard cups
1 Top-loading Mettler balance
Procedures:
Milk was slowly added to pudding mix in a glass double boiler and mixed
thoroughly. The mixture was cooked with stirring until thickened, and then
covered and cooked for 15 minutes. Pudding was poured into custard cups

and was allowed to chill in the refrigerator until firm.

C. Scoring

The three laboratory prepared products and one kind of commercially
prepared product (Pu Shih Soymilk) were compared with respect to aroma,
taste, color, and texture by four trained taste panels. The panels were
instructed as to the desirable qualities of the products and the method of

scoring. The score cards were as follows:

1. QUALITY SCORE

Basis of Scoring: Date .
Name
Aroma—no beany odor
Taste—no bitter taste of beans
Color—creamy white
Texture—homogeneous mixture with no residues

Directions:
Score each product according to the following scale:
1 excellent

2 good
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3 fair
4  poor
5 unacceptable
product ‘ aroma taste color* l texture®
| - |
A | ( [
B | l
e A TR P = | — ; 5 —
C | ‘
et e e e e e e e =
D ! |
Comments:

*For the scoring of puddings, color and texture were omitted.

2. PREFERENCE SCORE

Directions:
Arrange the products in order of your preference, labeling the product
you like the most as 1 and the one you like the least as 4.

product ! preference

RESULTS AND DISCUSSION

Test of the Flavor of Soymilk

The results of quality scores are reported in Table 1.

The result of the scoring was about the same as the experimenter had
expected. As shown in Table 1, product C consistently received the highest
score, and product A received the lowest score among laboratory prepared
soymilks. All laboratory prepared soymilks were preferred to commercially
prepared product. The commercial product was unacceptable because of its
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Table 1. Average scores* of judges on soymilk

: | Overall
\.\ Trial Aroma | Taste Color Texture Seore

. el :
Product ™ HEIR 1 I \ i 1 | o 1 I
A | 34| 3.5 38| 28| 30| 30| 34| 15| 3.4 23
B a4l 33| s0| 53| 28] so| 30| 15| 28] 25
e wall 1w 40| 20 we| 28| 3@ a5 25| 19

D 40| 40| 40| 45| 48| 50| 48| 48| 39| 4.5
|

* Average of 4 judges.

** A__Room temperature sodium bicarbonate solution extraction.
B—80°C sodium bicarbonate solution extraction.
C—60°C sodium bicarbonate, with added ascorbic acid, extraction.

D—Commercial product.
color and texture.
Ascorbic acid was chosen as antioxidant for this study so that the product

can also be an ascorbic acid supplier.
A preference evaluation showed that product B and C were preferred.

(Table 2)

Table 2. Ranking of laboratory prepared soymilk and commercially
prepared soymilk

Judges
Product : T = = 7
I I I J v
A 4 | 3 ‘ 3 | 3
B 1 2 g 2 | 1
(5 3 1 1 2
D 2 . 4 ‘ 4 4

Table 3. Some organoleptic and chemical characteristics of soymilk

Product : Color } Flavor Texture pH
|
A yellowishwhite I painty homogeneous 8.39
B yellowishwhite | eggy homogeneous 8.35
C creamy white ‘ little aroma homogeneous 7.62*
D reddish brown | beany residues 6.39

* The lower pH of C was due to the added ascorbic acid. pH of whole cow’s
milk was 6.66.
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A study was conducted to test some organoleptic and chemical charac-
teristics of soymilk. The results of this study are shown in Table 3.

The yields of soymilk were weighed to see the effect of extraction
temperature on the yield of soymilk. (Table 4)

Table 4. Yields of soymilks

Product i A Jl B [

Yield (g) = 439 391 411

The yield of milk decreased with increasing extraction temperature as
expected.
Test of the Acceptability of Soymilk Pudding

To test the acceptability of soymilk pudding with different kinds of
flavorings, quality and preference cards were used, the results of which are
recorded in Tables 5 & 6.

Table 5. Average* scores of judges on soymilk puddings

S

1.8 2.0 1.8 I 1.6 1.8
‘ |

e 5 Trial Aroma Taste Overall Score

Produc\t\\ A | o BT
Ax 20 | 3.8 3.0 | 3.3 2.5 3.5
B 3.3 ‘ 40 | a4 3.8 3.9 3.9
C 18 | 23 2.3 1.8 1.9 | 1.9
D 1.3 ‘I

* Average of four judges.
* A—Vanilla. B—Lemon. C—Butterscotch, D—Chocolate.

Table 6. Ranking of soymilk pudding

Judges
Products SIS e
1 | 11 111 | v
A ' 4 3 | 3 | 3
B 3 4 | 4 | 4
c | 2 | 2 1 1 1
D ‘ 1 | 1 2 2
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As can be seen from Table 6, almost all products were evaluated as
acceptable except product B (lemon). Two panel members stated that the
beany flavor was almost completely covered in product D (chocolate).
One of the panel members suggested adding some sugar to product D.
Judges scored the product A (vanilla) as very beany. As can be seen from
Table 6, products C and D were preferred over products A and B.
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“I didn’t learn anything because the teacher always answered
my questions.”
AMERICAN STUDENT

“...because I had expected him (Don Juan) to hand out all the
information. If he had done so, he said, I would never have

learned.”
CASTANEDA
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