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COHOMOLOGY OF COCOMMUTATIVE
HOPF ALGEBRAS

WEN-HSIUNG LIN

§1. INTRODUCTION

In this paper we shall construct another version of the May
spectral sequence for cocommutative Hopf algebras. The purpose of
the study of this kind is to find an effective method for computing
the cohomology of such algebras.

A major problem in homological algebra is the effective calcu-
lation of Ext,(K,K) for a graded Hopf algebra A over a field K.
In topology, the problem comes up in evaluating the E,-term of the
Adams spectral sequence. In the latter case the algebras we are
interested in turns out to be cocommutative Hopf algebras over Zj,
the ring of integers modulo a prime number 2.

In recent years the most successful method to attack this problem
has been the May spectral sequence. Let A be a Hopf algebra over
a field K and let E°(A) be the associated graded algebra corresponding
to the augmentation filtration Fs(A) of A.]J.P. May® establishes a
spectral sequence {E,} with E;=H*(E%(A)) which converges to an
algebra associated to H*(A). Here H*(X)=Exts(K,K) denotes the
cohomology of a graded algebra X (over K). Since E°A is primi-
tively generated, by a theorem due to Milnor and Moore®, it is
isomorphic to the universal enveloping algebra of the Lie algebra or
the restricted Lie algebra (depending on whether K is of character-
istic 0 or of characteristic a prime number) of its primitive elements.
In his dissertation, May also gives a canonical resolution of K over
such a universal enveloping algebra. Since H*(E°A) is more manage- -
able and much smaller than the cobar construction ¢(A*) it is easier
to start from H*(E°(A)), the Es-term of the May spectral sequence,
to calculate H*(A).

In ‘this paper we develope a technique similar to May’s and
establish a spectral sequence for cocommutative Hopf algebras
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parallel to May spectral sequence. The main theorem will be stated
at the end of the next section. In §3 we apply our method to derive
May’s resolution for restricted Lie algebra in a neat and elegant way.
This is the only application of our method in this paper. Our main
goal is, of course, to apply this method to the computations of the
cohomology of the Steenrod algebra. We hope to come to this
problem in later papers.

§2. CONSTRUCTION OF A SPECTRAL SEQUENCE

In this paper we only consider a mod 2 case, i. e. the ground field
will be Z,. Our construction can be applied to any locally finite
cocommutative Hopf algebra, but we shall just do this for the mod 2
Steenrod algebra as an illustration. At the end of this section we
summarize our result for all cocommutative Hopf :;llgebras. '

So let A denote mod 2 Steenrod algebra and let A* be the dual
Hopf algebra. Thus A*=Z,[&,,8,...] '

J. P. May considers the augmentation filtration F»A of A to
‘establish his spectral sequence. Instead of this we consider the
augmentation filtration Fp(A*) of A* That is,

FpA*=A% if p>0

F_,A*=](A¥*)

F_sA*=Im (I(A*)@b..@;I(A*)M—e-I(A*)) if p>1.

Let E°(A*) be the associated graded algebra i.e.
Eap,q(A*):(FPA*/FP—1A*)1?+¢-

By Theorem 7.13 of Ref. (2), E°A*~A%*, since A* is a commutative
Hopf algebra. So E°A*~A*=7,[&,&,...]1. By Theorem 7.4 of Ref.
(2), E°A* is primitively generated. So in E°A* we have A(£,)
=£&,R014+1R&: all k& Let E°A be the dual Hopf algebra of E°A%*,
“The reason we write this dual Hopf algebra as E°A is the following:
If we denote by Fp(A) the filtration of A dual to Fs(A*) then E°A
is precisely the associated graded algebra. Now E°A is a divided

polynomial algebra with usual coproduct. More precisely, if {T (Eil. ..

gi")} is the Zg-basis of E°A dual to the nonomial basis {(5?5?)}
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of E%A¥*, then the multiplication of E°A is given by

() = () () (i),

and the coproduct is given by
A[r(ei‘...ei”)]zpj : S T(a’ ) er (@),

1"?3

Let a5=7(£%¢). Then it is easy to see that, as an algebra, E°A is
just an exterior algebra E[a%]. We already know that the cohomology
H*(E°A) of E°A is a polynomial algebra Z,[R%] with dim Ri=dim
a;. Here the homological degree of R} in H*(E°A) is 1 and dim R%
is the #-degree in H*'*(E°A)=ExtJ:!(Z.,Z,). (The notation R% here
agrees with May’s). With this in mind, we may expect that the
spectral sequence to be constructed has E,~Z,[ {].

Now consider the cobar construction é(A*). We recall that ¢{ A*)
is just the tensor algebra T(I{A*)). It is a differential algebra with
differential ¢ given by

daslasl..lal= | 5 Sleal...laralal,, laf, | la,]

1<r£n

PN

where ﬁ(ﬂ:r)zzﬂﬁ;.g,@’ Tapgt
#r

The cohomology of this differential algebra is H*(A).
We define a filtration F3T on T(I(A*)) as follows:

FpT*(I(A*))=T#*(I(A*)) for p>—2n,
F,;T*(I(A*))= 51+fz+--§; =,;.|.pF;1(I(A*))®. QF;  (I(A=)) for p<—2n.
iy €1

This filtration satisfies the following:

(1) ...CFCFs+C..., i.e. the filiration is increasing.

(2) Each Fp is a differential submodule of T(I(A*)). In fact we
have 8(F3)CFp_1.

(3) Fp+F,CFp4q, i.e. the filtration is multiplicative.

(4) The filtration is complete, i.e.

lim_’FpT='I‘(I(A*)) and hm T(I(A*))/FsT=T(I(A*)).

P 1-‘3'
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These four properties can be easily checked. For example, the last
one follows from the local finiteness of A¥*, .
We establish the resulting spectral sequence by

L T T (*)

The reason we define E?? in this way is that T(I(A*)) is a cochain

complex, i. e. the differential § raises the homological degree s by 1
while our filtration is increasing. So if E?'? is defined by (*), the

spectral sequence {E,},>, will then satisfy the usual rule:
3,. :E’:'Q—VE’;'”’Q'"”'I.

From property (3) of the filtration we see the spectral sequence
is multiplicative. From property (2) we have 6(F)CFs_1. So

Ept=Ep7=(F_s/F_»_1)s+0

Now we are going to identify the E,-term of this spectral sequence
with the cobar construction ¢(E°A*) as May did in his dissertation,
First we bigrade ¢(E°A*) by

= S EN®.. QB i (%)
fltistldig=4
p+aI=1n '
z'_-;-ﬂ:,—l
where E3=E‘}(A*)={£E?,m(ﬁ*)-

We noted earlier that ¢(E°A*) is a differential algebra with differential
8. Also, the E;-term of our spectral sequence is a differential algebra
with differential 8; since the spectral sequence is multiplicative. We
now compare these two differential algebras.

Proposition 2.1. ¢(E°A*), with bigrading defined by (**), is
isomorphic to the E,-term of the spectral seqﬁence as bigraded
differential algebra.

Proof. Let a:=c_-“i1 .. .Ei” be a monomial in A*. We define the length
of z to be l{z)=4+...4+i,. Let M; be the set of all monomials of
length / and m;=!QIM,. Then we see that mys is a Zs.-basis of F_,(A¥*)

and that M is a Z,basis of F_(A*)/F_,_,(A*)=E%, (A%)
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(=UE%, (A*)). Let K be the subsét of T#(I(A*)), defined as

follows: If p<2n—1 then K§=¢. If p>2n then K¢ is defined to
be the set of those [&;|asl...|z,] such that each z; is a monomial
and such that if 7, =I(2,) then i;+it...Fi,=p—n.

Let x}“’zsgpl‘lg’”. Then we see that for each fixed #, & is a

Z.-basis of F_,(T") and that K{9 is a Zg-basis for EP?2=EP7=F_,(T*)/
F_p_(T*)=(F_3T/F_p_,T), (p+qg=n). From the definition of the
bigrading of ¢(E°A*) it is also clear that K{» is a Zs-basis of
e ?(E'A*) (p+g=mn). It follows that ¢(E°A*) and the E,-term are
naturally isomorphic as bigraded Z,-modules. Since the algebra
structure of ¢(E°A*) comes from justposition composition and that
of E, 1s induced by the justposition composition of ¢(A¥*), it follows
that ¢(E°A*) and E,; are also naturally isomorphic as bigraded
algebras. It remains to check that their differentials ¢ and d, agree
on their algebra generators. The algebra generators of E; are
{[2]}, x€ A* and those of ¢(E°A¥*) are again {[2]} when the =z’ are
considered as elements in E°A*. It suffices to evaluate 4,([«]) and
d0([2]) for monomials x to see that they are of the same form.

Let z=§ ...5,", then [#]€EM" where &+ist...+i,=—q and
p+q=1. It follows that in ¢(A*)

w]);,,jz;.-.,ji.o(ﬁ;)---(,i:)

vi vz v,, f1=vp1

ig—¥ , r
[E:} E" .- :: !51 "'5:: ”]+§[$5le] '
where 2 and 2} are monomials such that

Uay)+ () >l ()+1=—g+1.
Thus S22y 1€Fo s
7

Hence,

i1—vi1

LEMETTLETT (1)

()= s 3 5 (e

v1=0 v =0 YV,

Now in E°A* we have A(&;)=&,R1+1R&;, for each £ and hence
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A(ep)= 3% (7)£i@r~. Thus in 5(E°A*) we have

iy

¥

6([x]J=y%B-.-U:§iO(£1)‘--(j:)[fil--.c?;”léil_”--- 2L (2)

(1) and (2) show that &([«])=4d:([«]). This is true for all mono-
mials z€A* (or in E°A*). Thus ¢(E°A*) and E, are naturally iso-
morphic as bigraded differential algebras. Q.E.D.

From Proposition 2.1 we have H(¢(E°A*))~E.. But H(¢(E°A*))
is just H*(EC°A) which is isomorphic to Z,[R3]. Thus we have
arrived at the conclusion: E.,~Z,[R}].

We can also construct this spectral sequence for any connected
locally finite cocommutative Hopf algebra over Z, and get a similar
conclusion as above. First we review the structure of any such Hopf

algebra. ‘
Let A be a connected locally finite cocommutative Hopf algebra

over Z, and let A* be the dual Hopf algebra. By Theorem 7.11
(Borel Theorem), Proposition 7.8.(3) of Ref. (2) we see that the
algebra structure of A* must be of the form

A¥~Z (21, @, ... 1 /22 =0

where {xz;} is a Z.,-basis of indecomposable clements of A*, 1< <o,
and if u,=oc0 we mean z; has infinite height.

Consider the augmentation filtration FpA* of A* and let E°A*
be the corresponding asscciated graded algebra. Then by Theorem
7.13 of Ref. (2) we have

ECA*~A*~7 [ 2, Zo, ... ]/a:?:k =0 as algebras.

Again by Theorem 7.4 of Ref. (2) we have that E°A* is primitively
generated. So in E°A* the coproduct is given by

Alz) =2:Q1+1Rz, all k.

The dual Hopf algebra E°A=(E°A*)* is, as an algebra, an exterior
algebra E[4t] on the duals ai of z¥, <. The cohomology H¥*(E"A)
of E°A is Z,[Ri] where R} corresponds to 4} with dim R}=dim aj.
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Summarizing we have the following
Theorem 2.2. Let A be a connected locally finite cocommutative
Hopf algebra over Z, and let A* be the dual Hopf algebra. Suppose

A*c~Z 2y, 2o, . . .],/.as";;M =0 is the algebra structure. Then there exists

a multiplicative spectral sequence {E,},», which is convergent to
the cohomology H*(A) of A and the E.;-term of which is isomorphic

to the polynomial algebra Z,[R%{] where R% corresponds to m",;" with

i<u; and dim Ri=dim 2%

§3. APPLICATION TO THE COHOMOLOGY OF
RESTRICTED LIE ALGEBRAS

In this section we apply our method to derive May’s resolutions
of Z, over restricted Lie algebras.

Let L be a locally finite restricted Lie algebra over Z, with Lie
product [,]1:L&®L—L and the characteristic map é&:L,—L., and let
V(L) be the universal enveloping algebra of L. V(L) is defined to
be the Tensor algebra T(L) modulo the two-sided ideal I where I
is the ideal generated by z®y+yXz+[2z.¥] and 2Q2+§(x). V(L)
is a primitively generated Hopf algebra with L. as the -Z;-module of
primitive elements. _

Although it is not stated explicitly in Ref. (2), the following
theorem can be easily proved using results given there.

Theorem 3.1. Let A be the connected locally finite cocommutative
Hopf algebra over Z. and let A* be the dual Hopf algebra. Suppose

A¥*~Z [ 21, zs, ...]/xi’uk:() is the algebra structure. Then the

following statements are equivalent:

(a) A is primitively generated. |

(b) A, as a Hopf algebra, is isomorphic to V(L) for some
(locally finite) restricted Lie algebra L.

(c¢) pe=1all &, i.e. A*~E[z;] as algebras.
Let {x:} be a Z,-basis of a restricted Lie algebra L. {x,} can be
extended to a Z,-basis m of V(L). Let 2% be dual to 2x with respect

to m. Then by Theorem 3.1 we see V(L)*~E[z%] (as algebras).
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From the algebra structure of V(L) we see that the basis # can be
chosen so that the coproduct A in V(L)* is given by =

A(JB’,‘;)=5{_‘,sz®$3‘,+Em.zfm@a:}‘m-%-l@w’g-j—x:@l ..... .' (%)

where / ranges over all (u;,v;) such that [xm,x”]#xk and such
that x;<v, and m ranges over all 2,, such that .:cﬁm=€(:c;_.).
Now we apply Theorem 2.2 to derive May’s theorem. If we

apply Theorem 2.2 to the algebra V(L), then since
V(L)*=E[z}]=Z,[zf, z¥, ... 1/(x¥)*=0

it follows that the E,-term of the spectral sequence becomes Z.[R} 1.
Proposition 3.2. (a) §,:E;—E, is given by

%(R})=3IRY RS +3(RS )°
(b) Es=Eq.

Proof. We prove (b) first.

We have E;=Z.[R}]. We simply write Rr=R%. From the de-
finition of the bigrading of ¢(E°A*) we see R,€E%-%. Hence for each
monomial (R, )%*...(R, )**€Z;[R;],. (Rg,)*. . (R, )*»€E27 where
P=2(ay+...+«,) and g=—(ay+...+a,). Thus if E?950 then
b= 2. -

Now suppose §,:E?:7—E2+n2-"+1 is a non-zero differential. So
E225£0 and E2+n2-v+1£(, This implies p=—2q and p+7= —2(q—r-1).
From this it follows immediately that #=2. Thus the only possible
non-zero differential is d.. This proves 8,=0 if #>>3. Thus E;=E_.

Now we prove (a). From the construction of the spectral
sequence we see that the Eg-term can be embedded in the cobar
construction ¢(E°A*). One embedding in this case is given by

$(Rpr. . Ry7)

=[af, | laf et el aE L eE ] (k<. . <ky).

< &,y —>

- 4 @ > < @y

So to evaluate §,;(R;) it suffices to evaluate O([2¥]1) in ¢(V(L)*).
Now from (*) we have
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8([2}]) =Lk, ot 1+ Slet, 1%, 1

Since [2}]€F_./F_; and [:cjf:[x?f!], [xj‘mlxj‘m]eF_.;/Fﬂs it follows that
SS(R;,)z“F:_‘,RMR”+ER§m. This completes the proof of (a). Q.E.D.

From proposition 3.2 we observe that E, is the homology of the
differential algebra E.=Z.[R;] with differential d; given by 8:(R;)=
ERMR”#—ERi - In this case we can check that the algebra ex-
i w ™

tension from E, to H¥(V(L)) is trivial. In this way we have
arrived at the following conclusion.

Theorem 3.3. H*(V(L)) is the homology of the differential
algebra E.. |

Here E, is exactly the complex X*® derived from May’s resolu-
tion of Z, over V(L).

REFERENCES

(1) J.P. May, Cohomology of restricted Lie algebras and of Hopf algebras.
Application to the Steenrod algebra; Ph. D. Dissertation, Princeton, 1964.

(2) J1. Milnor and J.C. Moore, On the structure of Hopf algebras. Ann. of
Math., vol 81, 1965.
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“If T have seen farther than others, it is by standing on
the shoulders of giants.”

An old saying, quoted by Newton.
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APPLICATIONS OF SPECTRAL SEQUENCES (I)*

(Homology and Cohomology of a HMonoid)
Hon-Yu MA

ABSTRACT

We construct the homology group H(z, X} of a group
7 with coefficients in space on which = operates. Under
some modifications, we obtain a covering space X—X/=,
Then we construct the spectral sequence for this covering
space, and finish the correspondence between H{z, X) and -
H(X.). The cohomology groups are considered in the
same way as homology groups. Some applications are
given, e.g. if a group of two elements acts upon an
n-dimensional sphere, one computes the cohomology group
of an n-dimensional projective space.

§1. HOMQLOGY GROUPS OF n WITH COEFFICIENTS IN A
Z(7z)-MODULE

Let 7 be a monoid, and C={C,, d,} be a chain complex of free
left Z(x)-modules with argumentation e: Co—~>Z (where Z has the
trivial Z{z)-module structure) such that the sequence o> Cp—=>Cpy—
eo—>Cy—+Cy—>Z—0 is exact, i.e. C is acyclic. Then for any right Z(=)-
module A, the sequence: ﬁA@Cq—e’ A®Cf—>A®CD-%0 define a
chain complex with homology groups H, A@ C).

Furthermore, let f: A—B be a Z{(x)-homorphism, then it induces
homomorphism fx: Ho(A @ C)—H,(B @ C), and for an exact sequence

0—~A’/-+A—A"—( of Z(z)-modules, we have the exact sequence 0—A/ ®
C—~A ® C—A" @ C—0. From this there exists a canonical homorphlsm

a: Hy (A" ®C)~+Hq —1(A' ®C Thus we have a homology theory

* This paper was supported by the National Science Council, Republic of
China. (August 1972-July 1973).
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{H,(A @ C), fx, 0} for the monoid z. H,(A @ C) is called the homology

group of z with coefficient in A. They are independent on the choice
of C®, Therefore, we denote them simply by H, (=, A).

Theorem 1. (1) Hy(m, A)=A, where A is the quotient module of
A by the submodule generated by all the elements of the form:

ar—a ac A, zen.

(2) Ho(m, A)=0 for ¢>0 if A is a free Z(=)-module.
Proof. {1) Since the sequence C,—C,—~Z—0 is exact, thus we
have: H{,(A@C A®C0/1m(A®Cl—>A®C
_A®C{,/ker A®00—>A®Z) A@Z

While {az—a: ac A, zex} is the kernel of the canonical homomorphism
A-ARZ by a>a®1,

hence then AR Z=A/{az—a: acA, zecn}=A..

(2) Since A is a free Z(=)-module, we consider Z(x) as a right
Z(w)-module. Then A can be considered as the direct sum of certain
numbers of copies of Z{z). Then the canonical isomorphisms: Z(x)
@CG%Z(@CQ‘ECQ implying H,(Z(x) @C}ZO for ¢>0. Therefore, we

have I—L;(A@C):O for g>0. Q.E. D.

§2. COHOMOLOGY GROUPS OF z WITH COEFFICIENTS IN A
Z(7)-MODULE

We consider a left Z(z)-module A, and let Hom.(C, A) be the
group of the Z({z)-homomorphisms from C, to A. Composing every
element of Hom.(C,, A) with d: C,+,—~C, gives an element of Hom,
(Cg+1, A). Then there exists a homomorphism d’: Hom.(C, A)—
Hom:(Cg+y, A) with d’d’=0, Therefore we obtain a cochain complex
Hom.(C, A) with cohomology groups H?(Hom.(C,A)). For a given
homomorphism f: A-—B, there exists f*: H7(Hom.(C, A}))=H?(Hom-
(C,B)), and for a given exact sequence 0—~A’—A—A”—(, there is an
exact sequence: 0—~>Hom,.(C, A’)~Hom.(C, A)—Hom.(C, A”)=0, and
there exists a canonical homomorphism é: H?(Hom.(C, A”))—=H7+1
(Hom.(C, A7}). Therefore we have a cohomology theory for the
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monoid 7, say H¥={H?(Hom.(C,A)), f* 8} and denote H?(Hom.

(C,A)) simply by H?(z, A) also.
Thgorem 17, (1) H% =, A)=A7 where A*={qeA: za=a for any

ot

xrem}

(2) H' (=, A)=0 for ¢>0, if A is =n-injective.
Proof. (1) Since the sequence C,—C,~Z—0 is exact, thus Hom.
(Ci, A)<Hom:(Co, A)<-Hom.(Z, A)<0 is exact. Hence then
H°(Hom(C, A))=ker(Hom.(C, A)—~Hom.(C; A))
=Im(Hom(Z, A)-»Hom,(C, A))
=Hom.(Z, A).
And we can identify any homomorphism ¢: Z—A with (1), and
th‘en ‘get the result Hom.(Z, A)=A~".
(2) Let ¢: Cq—A (¢g>0) such that ¢+d,+,=0, we have that:

dg+1  dyg
Cgs1—C—C,

@'dq-i-l N\ ¢
A

where ker dy;=Im d,.,Cker ¢. Passing to the quotient, there exists
¢*: Co/Im dyi1—~A. Hence ¢ defines a homomorphism ¥ from the
image of d, to A, and A becomes z-injective. Then ¥ can be extended
to Cq—1—~A, which also be denoted by vr. We have Yr+d,=¢. There-
fore H?(Hom.(C, A))=0 for ¢>0. Q.E.D.

§3. SPACE WITH GROUP OPERATION

Let X be topological space, and Aut(X) be the group of homeomor-
phisms from X into itself. We say that a group = operates on X if
there exists a group homomorphism z: z—Aut(X). An open set U
in X is said to be proper (under the action of =) if ¢UNU=¢
whenever ¢ex and a#1. A group = is said to operate properly on
X if every point of X is contained in a proper open set which cons-
titutes a base for the topology of X. When = operates properly on
X, then no homeomorphism x(e¢) with a#1 can leave any point
fixed; we say that = operates on X without fixed point. Let p be
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the projection of X to its orbit space X/z. Then X is a covering
space of X/n.

$4. HOMOLOGY GROUP OF » WITH COEFFICIENTS IN A GRADED
COMPLEX WHERE » OPERATES ON THE RIGHT

Let X be the singular chain complex of X on which @ operates
from the right, and let C be a space on which = operates from the
left, and suppose that the homology of C is trivial (i.e, H,(C)=0 for
qg>0, Ho(C)=Z), and the chain complex C of € is formed by free Z(x)-
modules. Consider the tensor product X @ C as the quotient of X @ C

by the equivalence relation defined by (2:s7!) Qs-y=2Q v for any
xzeX, yeC and sewn. The graded group X® C is bigraded by

graduations of X and of C. An element 2 ® v has total degree p+gq
if x is of degree p and vy is of degree g. We define a new boundary
operator on X®C, i.e.

(xR y)=(0xz) Ryt (—1)2x @0y if p is the degree of z in X.
Then X @ C is a graded complex. Thus we can obtain the homology

groups He(X @ C) which are independent of the choice of € and we

denote them simply by H,(=, X).

§5. COHOMOLOGY GROUPS OF = WITH COEFFICIENTS IN A
GRADED DIFFERENTIAL ALGEBRA WHERE » OPERATES
ON THE LEFT '

Let Y be the singular cochain complex of the space X, let =
operate on the left of Y, and C be the same as in the homology
case, Consider the group Hom.(C,Y) which is composed of bigraded
groups Hom.(Cs, Y7).

We define a differential operator ¢ on Hom.(C,Y) by
Of =0%f+(—1)?dyxf for any fe Hom.(C? Y?) _
where 8%: Hom.(Cp Y?)—>Hom.(Cps+;, Y?) is induced by &, and

0% f=fo0, _
Oyx: Hom.(Cp, Y?)=Hom.{Cp, Y?*1) is induced by &y and

Oyxf=0yof
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Then it is clear tilat- 00=0; thus we can take cohomology; say
H*(Hom.(C,Y)), which is also independent of the choice of C. We
also denote it simply by H*(x, Y).

§6. THE SUFFICIENT CONDITION FOR H(r X)—H(X.) TO BE
ISOMORPHIC

I. First case: The elements of X are all of degree 0.
B
To say that f*: H(x, X)—H(X.) induced from X @ C-X.=X®1Z,

‘where $ is the homomorphism C,—~Z by composing C,—C, and C,—Z,
is an isomorphism onto, is equivalent to that H,(z, X) is null for
g=1 and Hy(x, X)=X, (the latter has been proven above).
If X is n-free, then we have already that g* is an onto isomor-
phism. Next, we consider the weaker condition as following:
Define a mapping ¢: X@Z)Z(rc)—rX by & ® A—xi. If we consider

X@Z{rz} as a right Z(a)-module defined by the second factor Z(=),

then ¢ becomes a Z(x)-homomorphism. We say that X is weakly
n-free if ker ¢ is a direct summand; in other words, there exists a
Z(x)-homomorphism X-’*X@Z(E), which if composed with ¢ gives

the identity automorphism of X.

Proposition 1. If X is weakly =n-free, then the homology group
H,(m, X} is null for g=1, i.e. f* is an -onto isomorphism.

Proof. From the identity map X%X@Z(n)-:rX, we deduce the

identity map X ® C— X@ Z(m)) ® C-—~>X® C, i.e.
X ® C—-X ® C-~>X ® C is the identity map®. Passing to the

homology, we have that:
g(c,X)—rﬂﬂX@C}—-qu(n-,X) is the identity homomorphism.

But HQ{X@ C) is null for ¢=1, since H,(C)=0 for ¢=1®, Therefore

Hy(m, X)=0 for ¢g=1. Q.E. D.
II. General case: Not all elemenis of X are of degree 0.
Let X’ be the subjacent graded group of the complex X. By “X

is weakly =n-free”, we mean that for each integer n, X, is weakly

i

n-free. That is we have: H,(x, X )=0 for ¢=1 and any »n. (=)
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Theorem 2. Under the condition ( =), Bx: H(x, X)—=H(X.) is an
onto isomorphism.
Proof. Let A= X@C B= X@Z Ap= )_T'_. X, @C and By= 3]

n<h
X, ®Z Then B maps A into By, and mduces a homomorphism:
A;/Ap_—>B3/Bs_; which is compatible with the boundary operator,
while Ap/Ap_1=X5 @C, Bs/Bs 1=X ® Z. ‘Thus the homomorphism

H(Ap/Ap_1)—H(Bp/Bsp_1) is an onto isomorphism. ~Then by the
following two lemmas, 8 is an onto isomorphism.

Lemma 1. Let A and B be two abelian groups with “boundary
operators” and f is 2 homomorphism from A to B which is com-
patible with the boundary operators,and «« C Ay C Apqi C ++r, + C By
C Bp+1 C -+ be two filtrations of A and B respectively. Suppose
also that f(A»)CB; for any integer p and H(Ap.1/Ap)—=H(Bs:1/Bs)
defined by f is an onto isomorphism. Then for any integer ¢=1
and any integer p _

H(Ap+qo/As)—~H(Bs+,/Bp) is an onto isomorphism.

Proof. By induction on g, it is true for ¢=1. Suppose that it
is also true for ¢, we prove that it is true for g--1.

The exact sequences: 0—Ap+o/Ap—>Apsge1/Ap>Apigi1/Aps,—0

and 0—Bp+;/Bs=Bssg+1/Bs=Bssg+1/Bsig—0
define two exact sequences for the homology groups and induce a
homomorphism from the former to the latter, i.e. we have the follo-
wing commutative diagram:

H(Aﬁ-kqﬂ/ﬂﬁﬁ-q)“*H Aﬁ—f-q/«&ﬁ ""*H(Aﬁ+q+1/Ai) '”*H(Aﬁ+q-:-1I/A.b-rq

I i
H(Bs+g+1/Bss+g)>H(Bp+ Q/Bp )2 H(Bpsg+1/Bp)=H(Bpigi1/Brsg)—
H(Aiﬁ-:-q/Ap

v I
H(Bp+4/B»).
By five lemma®™, we have that H(Ap4,41/As)=H(Bs+q+1/Bs).
Q.E.D.
Lemma 2. Under the hypothesis of Lemma 1, suppose also that A
and B are graded groups,i.e. A= %‘. A” B= % B*, and the graduations

are compatible with the filtrations (for example: A3=A*(A; for the
filtration A} of A”), and for any n, A}=0 if p is sufficiently small
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Az=A* if p is sufficiently large.
Then the homomorphism H(A)—H(B) defined by f is an onto isomor-
phism.
Proof. In fact, it suffices to verify that H(A”?)—H(B*) is an
onto isomorphism for any z. But this result follows from Lemma 1
immediately.

§7. THE SUFFICIENT CONDITION FOR H*(Y")-H*(zn,Y) TO BE
AN ISOMORPHISM

I. First case: The elements of the left z-module Y are all of
degree 0.

Under this condition, the homomorphism H*(Y®)—H*(z,Y) in-
duced by Hom.{Z,Y)-»Hom.(C,Y) is an onto isomorphism, that is
H% %, Y)=0 for any ¢g=1 and H*(Y7)=Y==H%=x,Y) (the latter has
been proven in Th.1’).

We consider the map vYr: Y—=Hom,(Z(x),Y) by

y—hy where

hy: Z(z)—~Y by

A=Ay,
then ¥Yr is a 1-1 Z(x)-homomorphism, if Hom,(Z(=),Y) is considered
as a left Z(x)-module defined by the structure of the right Z(=x)-
module Z(x). Furthermore, we say that Y is weakly =-injective if
there exists a Z(x)-homomorphism Hom;(Z(=), Y)—Y, and composing
it with 4Jr gives the identity automorphism of Y.

Proposition 1’. If Y is weakly =-injective, then H?(z, Y)=0 for
qg=1.

II. Second case: Not all elements of Y are of degree 0.

Theorem 2. Let Y be a graded complex with coboundary operator
of degree +1, Y/ be its subjacent graded group. Suppose also that

HY#, Y, )=0 for ¢=1 and for any =n.
Then H*(Y=)—H*(z, Y) is an onto isomorphism.
Proof. It is similar to the proofs in the homology case.

8. THE SPECTRAL SEQUENCES

We now return to the discussion of §4. Given a filtration structure
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on X@C L= }E} X@C,,, L) C L4y, there is a spectral sequence®

J!‘C
such that: E'= %H Ls/Lp—y), E2=H(E"),-~, EFti=H(E*), .-, E®
The homologies of E' E?% -.- are relative to the operators dt,d? ---
respectively, and the term E® is associated with the graded H(zX).
Let E% , denote the subgroup of E* formed by the terms of total
degree n, and the filtration degree p. Then we have that:

Ef ,=0 for p<0 or p>n and
E®,=E% , for k>max{p, n+1—p}.

Theorem 3. E? ,=H;(xn H,_»(X)), where = operates on the right
of H,_»(X).

Proof. Since El= %‘. H(L3/Ls—;) and H(L»/Ls..;) is the homology
group of X ® Cp, where the boundary operator is defined by the
operator @x of X, and Cp is a free Z(m)-module, thus H(X® Cp)=
H[X]@Cp(ll Therefore E},'p§H,,_p(X)®Cp. Since the boundary
d* of E*=H(X)® C is defined by the boundary of C:

(T Rec)=(—1)*"?r®0, for any reH,_»(X).
Therefore E*=H(E') is the homology group of = with coefficient in
H(X) where = operates on the right.

Now we refer to the case of §5.
Let L,= Z Hom.(C,,Y), then {L;} forms a decreasing filtration

n>p

for Hom.(C,Y) and there is a spectral sequence:
El= EH(L;/L};*l)! Ez‘tH(Ei):"'a Ek+1mH(Ek)s"'; Em’ and E% is
associated with the graded group H*{=, Y).

Theorem 3'. E? ,=H?(x,H"~?(Y)), where = operates on the left

of H==#(Y).
Proof. The same as Theorem 3.

§9. THE APPLICATIONS OF THE SPECTRAL SEQUENCES

I. Application to the case: For any #, there exists an integer 2,
such that E% ,=0 for p#p,, and p,i1—p.<1.
Theorem 4. Under the above hypothesis, H,(z, X) is isomorphic
to E3 , .
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Proof. By the hypothesis, all of d% d% -+ are null. Thus the
subgroup of E® formed by the elements with total degree » identifies
to E3,5,.- We have that EXs,=Bus,/Bus,-, where B, p=Im(H,(L;)
—~H,(7,X)). 0B, ,&+ B, 2,-1SB,,s,=H,(zX).

) 0
Hence then H,(z, X)=E} , . Q.E.D.

Theorem 5. A group = operating in a finite dimensional acyclic
manifold without fixed point, does not contain an element (1) of
finite order.

Proof. Let X be this manifold, and X be its chain complex,
then H,(X)=0 for ¢=1. Therefore by Theorem 4, we have that
H,(m X)=H,(n,Hy(X)). Since the group = operates on X without
fixed point, thus by Theorem 2, we have that H,(z X)=H,(X,).
But X/m is of dimension #, hence H,(X.)=0 for g>n. Then H,(x, Z)
=H,(m, Ho(X))=H, (7, X)=H,(X,), i.e. Hy(n, Z)=~H,(X.).

This shows that = can not be a nontrivial cyclic group of finite
order, since for such group, there exist infinite many values of ¢
such that Hy(w, Z)%#0. For example: Hupiq(x, Z)=Z/hZ, where } is
the order of nt®. Q.E.D.

II. Application to the case: H,(X)=0 for 0<g<n.

For this case, we have that: E% ,=H(m, H,-5(X))=0 for all
0=g<n with ¢#p, and H,(=, Ho(X))=E} ,=E%¥, for ¢<n, and
0=Bg,0="=By ;-1 S B, ,=H,(#,X).

Thus we have that H,(z, X)=H,(n, Hy(X)) for g<n.

We have also the following two diagrams:

2 2 2
E:H-I.E 'En,ﬂ }En—l,—ﬁ 5

0= I

H, 1 (7Ho(X))=Ezt . —>E2%
) 3 anl«"’
E?s_;-l.n+2 E::‘O“
I
I
EFXe J
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and

2 3 2 > 2
En+2,#+3 En-{-i,n-{-l Eﬂ.ﬂ—l
I -0

}'I Jr+1

E’;ﬁ, # +1_——'_)-E’:;-f'g’ =Ho(m, H, (X))
0=¢ Tz'

Eﬁtgl SHE 1*_"%]33-:'3 1
I

I

o
\ E?!‘i'l;ﬂ‘l-l

From the above diagrams, we can derive the following exact
sequence:

z‘ d”-}-l

Eutn+12E5 0y ES1 sss—— Bi—Ea, 0.
Therefore:
p; ‘ i An+1 ‘
Hn-}-l(?r: X}'_—?"Hn+1(7z; XJ'/B!:+1,1“"HH+1(W, HO(X} )‘—‘—:"HD(R’, H(X})
Py 2! e’
—>E, —~H,(r, X)—H, (7,X)/E,, 0 is exact.
ie. : '
'3‘}"); dr+1 z‘!.f)’_
Hr:'i*l(?rs X)'—-“}Hu -}‘l(ﬂg HO(X}) A{Hf:(X)}:'__—}H”(‘T! X)

e
—H, (7, H,(X))—0 is exact.

ITII. Application to the case: HY(Y)=0 for 0<g<n.
Under this condition, we have H?(#, Y )=H(7,H(Y)) for 0<lg<#,
and then an exact sequence:
0—H"(z, H(Y))—H*(z, Y )= (H*(Y))*=H** 7z, H(Y))»H"*(x, Y)

§10. APPLICATION OF §9 TO THE SPHERE S*

Let = be a group operating properly on 5%, and all ordinal coho-
mology groups be with integers as coefficients. From §9, III, we
have:

H(7, S*")=H"S*/z)=H(n,Z) for g<n (1)

and the exact sequence:



Fu Jen Studies 21

0—H" (7, Z)~>H*(S"/z)~>(H"(S")=>H"* (5, 2)>0  (2)

Examining for the case that = is the group with two elements
formed by the identity homeomorphism and the antipodal homeo-
morphism, by connecting the center, we have that S?/z==P".

Next, we want to compute the cohomology groups of P* with
integers as coefficients. From (1), we have directly that:

HY(P*)=H%(=,Z) for g<n.
While HY (=, Z)=Z, if ¢ is even

H%(#n,Z)=0 if ¢ is odd®,
=7, if ¢ is even and g<n,
Hence H?(P*)
=0 if ¢ is odd and g<n.

To compute H”*(P*):

(i) If nis odd, then the antipodal homeomorphism of S” pre-
serves the orientation of S*. Thus any element of H”(S”) is in-
variant under =, and then (2) becomes the exact -sequence:

0—H*(P*)=>H"(S*)>Z.~>0
1
Z
Hence H#(P7")==Z, and the map H*(P*)—>H*(S") is given by m—2m.

(ii) If n is even, then the antipodal homeomorphism reverses
the orientation of S”. Therefore (H*(S"))*=0, and the sequence

0—-Z,—~H,(P*)—0 is exact,

hence H*(P*)=7Z..
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“If little knowledge is dangerous, where is the man who
has so much as to be out of danger?”

T. H. Huxley, Science and Culture:
On Elementary Instruction in
Physiology (1881).



APPLICATIONS OF SPECTRAL SEQUENCES (II)*
(Sheaf Theory)

Hon-Yu MA

ABSTRACT

In this paper we take up the topic: Sheaf Theory.
The terms pre-sheaf and sheaf are first defined, and some
special sheaves are described along with a discussion of
properties that will be useful in later applications. For
every Theorem or Proposition a complete proof is given,
together with constructions of Sheaf Homology and
Cohomology. Then the spectral sequence of a differential
sheaf is applied to the Leray Sheaf. Finally, the method
is applied to locally trivial bundles and is used to get
Wang and Gysin exact sequences.

$1. PRELIMARIES CONCERNING PRESHEAVES
AND SHEAVES

A presheaf A on a topological space X is a function which
assigns to each open set U of X an abelian group A(U); and to
each pair U,V of open sets with UcV, a homomorphism (restriction)
7u,v: A(V)—=A(U) in such a way that:

rv,u=1, and #y v#y,w=7y,w when UcVCW.

A homomorphism %: A—~B of presheaves is a collection of homo-
morphisms Zy: A(U)-B(U) commuting with restrictions.
A sheaf of abelian groups on the space X is a pair (A, ), where
i) A is a topological space, _
ii) #: A—X is a local homeomorphism onto X,
iii) For each # in X, A,=n"(z) is an abelian group and is called
the stalk of A at z,
iv) The group operations are continuous. That means the map
ai—~>—a of A—~A and the map («,B) i—~a+B of the subspace

* This paper war supported by the National Science Council, Republic of
China. (August 1973—July 1974)
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AAA consisting of those pairs (a,B) with n(a)==(B) to A are

continuous.

And sheaves of rings can be defined in the same way with some
modifications.

A homomorphism %: A—B of sheaves is a continuous map with
#(A,)CB, for each z in X, and the restriction %.: A,~B: of % to
stalks is a homomorphism for all . If 0—A’'—~A—A” is an exact
sequence of sheaves, then the induced sequence 0—A/(Y )—A(Y)—A”
(Y) of sections over any subset Y of X is exact.

Given a presheaf A, let A.=1lim A(U), where U ranges over the
—

open neighborhoods of x in X, and let A be the union of groups A:
for all 2, =: A—X be the map mapping each point of A; to z. Fora
fixed element s in A(U), we take the set of all germs s, € A, for xeU
as an open set in A. Then the set A with the topology generated
by these open sets is called the sheaf generated by the presheaf A.

1.1 Proposition. If A, is a sheaf and A is the presheaf of
sections of A,, then there exists a natural map A,~A which is a
homeomorphism and preserves group operations, where A is the
sheaf generated by A.

Proof. For each a in A, acs(U) for some section s of A, over
some open set U. If n(a)=x, then we define A;—>A by @ 1—s:. It
is welldefined and satisfies the requirements. Q.E.D.

1.2 Proposition. If A is a presheaf and A is the sheaf generated
by A. Then for each open set U of X, there is a natural map 0y:
A(U)~>A(U) which is a homomeorphism and commutes with res-
trictions.

Proof. For ¢ in A(U), we define 6y(g): U—A by the assignment
x =g, then the map fy: ¢ —0(g) is the required homomorphism.

Q.E.D.

§2. THE CONSTRUCTIONS OF HOMOLOGY AND
COHOMOLOGY GROUPS IN SHEAF

A differential sheaf is a graded sheaf {L”: p is an integer}
together with homomorphisms d: L?—L?** such that d*=0.



Fu Jen Studies 25

A resolution of a sheaf A is a differential sheaf L* with L?=0
for p<0, together with an “argumentation” homomorphism £: A—L°

a_ d
such that the sequence 0—A—L'—L!—L2—... is exact.

Since the exactness of sequences commutes with direct limits,
thus we see that the functor assigning to a presheaf its associated

f_¢g
sheaf is an exact functor. Thus, if A—»B—C is a sequence of pre-
T g.’

sheaves of order two, and if ALB—rC is the induced sequence of
generated sheaves, then Im(f’) and Ker(g’) are generated respectively
by the presheaves Im(f) and Ker(g). Similarly, the sheaf Ker ¢//Im
ST is the sheaf generated by the presheaf:

U—Ker go/Im fy.

If L* is a differential sheaf, we define its homology sheaf (or
derived sheaf) to be the graded sheaf H*(L*) as usual,

H? (L*)=Ker(d: L*=L?*1)/Im(d: L’ =L?).
By the arguments above, we know that this sheaf is generated
by the presheaf

U—~H*(L*(U)).

For any sheaf A on X and open set UcX, let C°(U; A) be the
collection of serration®, that is C°(U; A)= T A., then the functor

U—C%(U; A) is a presheaf on X and in this case 8y is an isomorphism,
thus we consider this presheaf as a sheaf, we denote it by C°(U; A).
And there exists a natural monomorphism e: A—-C%(X; A) defined
by mapping each f, at & for fe A(U) to the germ of the section
yi—~fy,, ye€U at &. If ¢ is a family of supports on X, we put
Co(X; A)=I"p(C(X; A))={seC(X; A)=C%(X; A): [s|€p} and let
Z'(X; A) be the cokernel of £ so that the sequence: 0—~A—~C(X; A)
—Z}(X; A)—0 is exact. We also define inductively C*(X; A)=C"(X;
Z"(X; A)), Z¢+Y(X; A)=Z(X; Z*(X; A)). Thus each sequence 0—

£ 8
Zn(X; A)—»C*(X; A)—=Z**(X; A)=0 is exact. Let d=e-0 be the
: a 3
composition C*(X; A)—=Z"+1(X; A)-»C*+*(X; A), then the sequence
d
0—+A~—>C"(X;A)icl(X;A)ﬁCg(X;A)——»-- is exact., It is called the
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canonical resolution of A. This resolution is pointwise homotopically

trivial.: -

For a family of supports on X, (which means that ¢ is a family
of closed subsets of X such that a closed subset of a member of ¢
is in ¢ and ¢ is closed under finite union), we put C}(X; A)=I",(C*
_(X; A))*—“C;(X; Z*(X; A)), which is an exact functor. Finally we
define H2(X; A)=H*(C¥(X; A)). They form the sheaf cohomology
groups.

We have following results:

(1)'-Since 0=>To(A)=>To(CH{X; A))-T,(C(X; A)) is exact, thus
Fo(A)=H)(X; A).

(2) Given .a short exact sequence 0—A’—A—A"—0 of sheaves on
X, we have a short exact sequence. 0—-Cx(X; A’)—%Cj(X; A)—
C5(X; A”)=0 of chain complexes and thus an induced long exact
sequence:

e HI(X; A= H2(X; A)=H2(X; A7) H2H (X AT)> oo

| § 3. ACYCLIC SHEAVES AND FLABBY SHEAVES

A sheaf A is said to be ¢-acyclic if H;‘(X; A)=0 for »>0.

3.1 Theorem. If L* is a resolution of A by ¢-acyclic sheaves,
then there exists a map #: H?(I'o(L*))~>H2(X; A) which is an
isomorphism for all .

Proof. Let Z?=Ker(L’—L?+1)=Im((L?*"1—L?), where Z°=A.
Then the exact sequence 0—Z?-1—-L?-1—Z?—( induces the exact
sequence 0—~I"o(Z?~1)~T"o(L?~4)~>I"o(Z* )—~HL(X; Z*~*). Thus, we
have the monomorphism: '

(1) HY(T(L*)) Lo(Z7)

T Im(T (L 1)=>T o(L?))
‘the sequence 0—Z?~7—L?~7—Z#~r+1-() induces 2 homomorphism:
(2) H3(X; Z0-r+)—>Hr (X Z077). |
And let » be the composition:
H? (o (L*))—~HE (X Z27)—H2 (X; Z072)—> - —>H2(X; Z°)=H3(X; A).
If ¢ is acyclic, then (1) and (2) are isomorphism, so is 7. Q. E. D.
A sheaf A on X is said to be flabby if A(X)—A(U) is onto for
every. open set UcX,

—H} (X; Z?7).  Moreover,



Fu Jen Studies ' 27

3.2 Proposition. If f: X—Y is continuous and A is a flabby
sheaf on X, then fA is flabby (where fA denote the sheaf generated
by the presheaf U—=A(f~*(U)) on Y).

Proof. Since each 0y is an isomorphism, thus fFA(U)=A(f"1(U)).
Therefore the flabby property of fA follows from the ﬂaf)by pro-
perty of A. '

3.3 Theorem. Let O—r-A’i:-AiA”ﬁO be exact and suppose that

A’ is flabby. Then for any family ¢ of supports on X, 0—I"p(A')—>
Il'o(A)—>T'o(A”)—0 is exact. In particular, since A’|U is flabby for
any U open in X, 0—-A/(U)—»A(U)>A”(U)—0 is exact. If both A
and A are flabby, then A” is flabby.
- Proof. Let sel's(A”) and C={(U,#)|U: openin X, £€ A(U) with
ht(z)=s(x)}. At first, we show that Cw¢: For a fixed z,€X,
s(x,) € A”, there exists an a.,€ A with h(ax,)=s(x,). And a., is in
the image of some f€ A(U). Consider the set U={z|hi{z)=s(x)}
which is an open set. Thus (U,¢)eC. Order C by (U,#)<(U"¢#)
if UcU’ and #|U=¢, then by Zorn’s lemma, there exists a maximal
element (V,?) of C, and suppose that V#X. Let x&V, then by the
same way as above, there exists a neighborhood W of z such that
(W,#")eC for some '€ A(W).

Now, { | VAW—#|VAWeA(VAW) and hence extends to 7€ A’
(W), tIVaW=(¢+#")[VAW, so ¢ and #/+¢” define an element of A
(VUW) extending ¢ and representing s on VUW. This contradicts
the maximality of {V,#) and shows that V=X, '

Let U=X—|s| and #|Ue€A’(U). Thus #|U can be extended to
f'eA’_(XI), t—t! represents s on X and is zero on U. Thus [i—#]|C [s|€e.

The last statement follows from the commutative diagram with
both rows and left column exact:

A(X)=A"(X)—0
A(%)&A"(%)—}O

!
0 - Q.E.D.

‘3.4 Theorem. A flabby sheaf is g-acyclic for any o.
Proof. Since C°(X; A) is flabby, it follows from the above theo-
rem that Z*(X; A) is flabby when A is flabby. By induction all
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Z*(X; A) are flabby. Thus if we apply the functor I"s to the exact
sequences: : ' ‘

0—~Z*(X; A)—~>CHX; A)—=Z"1(X; A)—=0, n=1,2,.
we obtain exact sequences:
0—~T"o(Z*(X; A))—*C;‘(X; A)—*{’a(z"“(X; A))—0.

It follows that the sequence 0—T"o(A)—~Cl(X; A)—CL(X; A)— - is
exact, thus H2(X; A)=0 for »>0. ~ QE.D.

§ 4. ¢-SOFT SHEAVES

A sheaf A on X is said to be ¢-soft if A(X)—~>A(K) is onto for
all Keg. If ¢ consists of all closed sets, then A is said to be soft.
If YcX and ¢ is a family of supports on X, let ¢NY denote
the family {KNnY: Kec¢} of supports on Y, and ¢|Y denote the
family {K: KcY and K&€¢} of supports on Y. A support family ¢
on X is said to be paracompactifying if each element of ¢ is para-

41 Proposition. Let ¢ be paracompactifying. Then the following
statements are equivalent: :
. (1) A is ¢-soft,

" (2) A|K is soft for every Keo,

(3) I'e(A)—=T5):(A|F) is onto for all closed F in X.

Proof. (3)={1); It is trivial.

(1)=>(2); Let Kegp and K'e€¢ with K’cK. Since A is ¢-soft, we
have that A(X)—~A(K’) is onto, that is for each section s: K/'—A,
there exists a section s: X—~A which is an extension of s. Thus
s'|[K: K—A is an extension of s to K, therefore A(K)—=A(K’) is
onto. o _ o

(2)>(3); Let sel'p:(A|F), K=|s| and let K’€¢ be a neighbor-
hood of K, B be the boundary of K’. By (2), the element of
A((K'nF)uB) which 1s s on K'nF and zero on B can be extended
to s'e A(K’). Clearly s’ extends, by zero, to s”€ A(X) with {s”| cK/,
s” is the desired extension of s. Q. E.D.

42 Theorem. Let A be a subspace of X having a fundamental
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system of paracompact neighborhoods. Then, for any sheaf A on X,

A(A)=1im A(U) where U ranges ever the neighborhoods of A.
— .
Proof. Let s€ A(A) and let = be the local homeomorphism

A—~X. Then for each a¢€X, there exists an open set U], in X con-
taining @ and open set N, in A containing s(a), they are homeomor-
phic under =~1|U’. Since s(U,nA)nN, is open in s(U,nA) and
s|U.,nA is continuous, thus there exists an open set U, in X such
that U, contains @ and s(U.nA)Cs(U,nA)AN,. Let sy=n"*U
Therefore, we have s, € A{U,) with s5,]U;0A=s|U,nA. And thus
we obtain a covering of A by those open sets U,. ,

- We may assume that X is paracompact and that U, cover X;
otherwise, since Ac|J U,, there exists a paracompact neighborhood
Y of A with AcY c | U, weworkin¥Y. Thus we may also assume
that {U.} is locally finite. Since the paracompact space is normal,
there exists an open covefing {V.} of X with V,cU, for all a.
Let W={zeX: 2€V,nVsDs.(z)=s3(x)}, J(z)={a: z€V,}. Then
J(2) is finite and every x€ X has a neighborhood N{zx) such that
yeN(z)=>J(y)cJ(z).

If zeW, the sections s, for @€ J{x), coincide in a neighborhood
of . Thus W is open. Also AcW. Now let /& A(W) be defined by
t(x)=s«(x) when z€V.nW; ¢ then is well-defined by the definition
of W, and is continuous, since ‘it coincides with s, on VoNn'W. Thus
t extends s. Q. E. D.

4,3 Corollary. If ¢is paracompactifying, then every flabby sheaf
on X is ¢-soft. '

Proof. For each Ke€¢, there exists a paracompact hei'ghbdrhood
K’ of K, K'ep. Since K is normal, thus for each open set U con-
taining K, there exists an open set V with KcVecVcU. Then
KcVAnK/cU, where VK’ is paracompact. That is we have proved
that K has a fundamental system of paracompact neighborhoods.
Let s€ A(K), then by the theorem above, there exists an open
neighborhood W of K and s can be extended to a section s’ over W.
Since A is flabby, s’ can be extended to section s” over X. Therefore
A(X)—A(K) is onto. Q.E.D.
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44 Theorem. Let ¢ be paracompactifying and suppose that
0—A'—>A—~A"—( is exact with A’ @-soft. Then the sequence 00—
Io(A")=T (A)>T.(A”)—~0 is exact.

Proof. We need only to show that I'o(A)—T"(A”) is onto.

Let sel'o(A”), let K=|s| ¢, and let K'€ ¢ be a neighborhood of
K. Suppose that we can find an element € A(K’) representing s|K/'.
Then, on the boundary B of K’, #|B €A’(B) can be extended to
A’(K'). Subtracting this from #, we see that we may suppose #|B=0.
But then # can be extended by zero to X. Thus we see that we may
as well assume that X is paracompact, and ¢ is the class of all
closed sets.

Since the homomorphism between sheaves is also a local homeo-
morphism, and by above assumptions, if s€ A”(X), then there exists
a locally finite covering {U,} of X with s,€ A(U) representing s|U,.
Let {V,} be a covering of X with V,cU.

We order the index set {«}, and put F“:ﬁgdvﬁ' Since {Ug} is

locally finite, F, is closed for all . We shall define inductively an
element #,€A(I;) representing s|F., such that #.|Fs=#p for all f<a.
"~ Suppose that #;3 has been defined for all f<a. If @ is a limit ordinal,
let F‘;:BQMFE; then £, is defined in the natural way. If « is the

successor of af, then both #. and s.’ represent s on FornV,.. The
difference is a section of A’ over F,n V. and hence can be extended
to A’(V.r). Thus £ can be extended to F, representing s|F,. Q.E.D.
4,5 Preposition. If ¢ is paracompactifying and 0—A/—A—A"
-0 is exact with A’ and A ¢-soft, then A” is also ¢-soft.
Proof. Let Ke€¢, we consider every K'e€¢ with K/CK. In the
diagram:
A(K)-—»A”([K}-&O
A(%r)—a»A””{Kf)—»o

L 2

0
Since A/, A are ¢-soft, by Proposition 4.1, A, A’ are ¢|K-soft. Thus
the top and bottom rows and the left column are exact. It follows
that A”(K)—A”(K’) is onto. That is A” is ¢|K-soft. Thus A” is
w@-soft, Q.E.D.
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46 Theorem. A o-soft sheaf is p-acyclic if ¢ is paracompacti-
fying.

Proof. Consider the sequence 0—A—C°(X; A)~ZY(X; A)—0, A
is p-soft. Since C°(X; A) is flaby, it follows from the associated exact
cohomology sequence: OmH";‘l(X; CUX; A))—H2UX; Z2:(X; A))
—H7(X; A)—~H(X; C)=0 for n>1; we have H;(X;A):Hg”l(}{;
Z}(X; A)) for n>1.

Since A is ¢-soft. Thus 0=To(A)—~>To(C°)=>T6(Z')—~0 is exact.
Thus H}(X; A)=0, and then HE(X; Z(X; A))=0 for £>0. By Corol-
lary 4.3, Z1(X; A) is also ¢-soft. So that the theorem follows by
induction. Q.E.D.

A subspace A of a space X is said to be relatively Hausdorff if
any two points of A have disjoint open neighborhoods in X.

4.7 Theorem. Let A be a compact relatively Hausdorff subset

of a space X. Then for any sheaf A on X, A(A)=1lim A(U), where
. —_—
U ranges over the neighborhoods of A in X,

Proof. Let s€ A(A). We follow the same procedure as in
proving Theorem 4.2. Since A is compact, we can obtain a finite
open covering {U;} of A in X and elements s;€ A(U;) with s:|AnU;
=s|AnU;. Next, we shrink the open covering {U;nA} of A to get
compact sets K;cU;nA with A=uUK;. Thus it suffices to prove the
following assertion (and by induction):

If P, P, are compact subsets of A with open neighborhoods
V,, V; resp. in X, and if #;€ A(V;) coincide on P;nP,, then there is
a section £ over some neighborhood of P;UP. coinciding with #; on
P;, i=1,2.

Since £, and £, coincide on some neighborhood V of P.nP,, we
may suppose that VcV,nV, The sets P,—V, P.—V are disjoint
compact, since A is relatively Hausdorff, they have disjoint open
neighborhoods Q; >P;—V in X. The sections #|Qs, #1V=%|V and
#,1Q, coincide on their common domain and thereby provide a section
ton QUVUQ,2P,UP,. Q.E.D.

48 Corollary. If A is a compact relatively Hausdorff subspace
of X, then A|A is soft for any flabby sheaf A on X.
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Proof. For each closed subset A’ of A, A’ is also a compact
relatively Hausdorff subspace of X. Let te A(A’). By Theorem 4.7,
¢t can be extended to an open neighborhood U of A!. Since A is
flabby, this section can again be extended to X. Then restricting it
on A, we get the required extension of 7 to A. Q.E.D. -

§$ 5. THE CONSTRUCTION OF RELATIVE COHOMOLOGY

Let AcX, and let ¢ be a family of supports on X. For any
sheaf A on X, we have the natural homomorphism C*(X; A)—
C*(A; AlA), or equivalently the homomorphism z*: C¥(X; A)—
: C*(A; A|A) of sheaves on X.

Let Ker *=C*(X,A; A), C¥(X,A; A)=I"y(C*(X,A; A)), and then
define HX(X, A; A]zH*(C;‘(X,A; A)) as the relative cohomology.

Since Ker 7 is flabby and I'o(iB)=I"sar(B), thus the exact
sequence: 0—Ker *—C*(X; A)—iC*(A; A|A)—0 induces an exact
sequence: 0—7I"o(Ker i*)—>I",(C*(X; A))—~>I"o(i C*(A; A|A))—0. That
is 0—}C§§(X,A;A}%C;‘(X;A)%C;‘M(A;AlA)—*O, and hence a long
exact sequence: - —HZ(X,A; A)—~H?(X; A)—=HZ (A A[A)—-»Hg“
(X,A; A)=> ++ And here Cx(X,A; A) and C¥#(X,A; A) are exact
functors of A.

§ 6. DIMENSION

Let ¢ be a family of supports on X and Iet L be a fixed ground
ring with unit (or, more generally, a sheaf of rings). We let
dime,, X be the smallest integer # (or co) such that H(_’;f(X;A)=0
for all sheaves A of L-modules and all 2>#n.

6.1 Propesition. The following statements are equivalent:

(1) dimy, X<, _

(2) For any sheaf A of L-modules, Z”(X; A) is g-acyclic,

(3) Every sheaf A of L-modules has a ¢-acyclic resolution of

length 7.

Proof. (1)=>(2): Let Z? denote Z#(X; A) and C? denote C*(X; A).

We have exact sequences 0—Z*—C/—Z?+1—( for all >0, then
HSI;{X‘; Zn)gH’;H{X; Zn—l) ~ ... EH’;*""‘_I(X; Zl}gﬂg+k(x; A)EO for
any £>0.
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(2)2(3): 0=A—=>C'—>Cl—--—C*1Z"*—( is a p-acyclic resolution
of length #n.

(3)=>(1): Let 0—A—L'—L!'-—«—L*~>0 be a ¢-acyclic resolution
of A of length # and Z?=Ker(L?—L?+!), Then for £>0, we have
that:

Hi+H(X; A)=HiH-1(X; )= HE(X; Z7) =HA(X; Lt) =0,

Q.E.D.

§ 7. SPECTRAL SEQUENCES OF DOUBLE COMPLEXES

Suppose that C** is a double complex over some fixed ring,
that is a fémily of modules doubly indexed by the integers and with
differentials d’: C#:?—C?+%:2 and g”: C#:?—C?+?+1 gych that (d’)*=0,
(d")2=0 and d’d"+-d"d’=0.

Let C* be the total complex with C*= 3 C#7 and the dif-

b+q==n

ferential d=d'+d”. We have two filtrations in the complex C*: the
first filtration ’F is defined by ’F;C”mg‘,tcl"", p+qg=n; the second

filtration ”F is defined by #F,C*= EzC‘”, P+qg=n.
7>

From these filtrations, we obtain two spectral sequences® denoted
by {'E2:7,d,} and {"E?'7,d}’} respectively where d),: /E2-0—>/E2+7,0=7+1
and d,’: "E2:9—VE2tr-9-r+1 Tn these notations, p is the filtration
degree and ¢ is the complementary degree. We denote the homology
with respect to 4’ and d” by 'H and ”H respectively. Then we
have that: 'E?7="H?(C?+*) and “E?7='H?(C*?). And we have the
differential operators d; on ‘E, terms and d;" on ”E; terms which
are induced by &’ and d” respectively. Therefore:

- !E,g'i':fHﬂ(f!Hﬁ‘(C*,*j) and HEE,‘?:NHP(IHQ(C*,*)).

If C*?=0 for p<p, (p, is fixed), then ”F,C*=0 for ¢>n—p, Here
we 's_ay thét the second filtration is regular. While if C#?=0 for
g<q,, then 'F,C*=0 for {>n—q, we say that the first filtration is
regular. Thus we have another useful condition implying the
regularities of both filtrations, namely- that there exist integers 2,
and p; such that C?:?=0 for p<p, and for p>p,.

Now, we introduce two decreasing filtrations in H*(C*):
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TF,HA(C*)=Im{H*('FpC*)->H?(C*)), "FpH”*(C*)=Im(H*("F,C¥*)
—H"*(C*)). Two graded modules associated with these two filtrations
'FpH*(C*) and "FpH*(C*) are defined to be 'G,H*(C*) and ?GpH*(Cx)
respectively,where/GpH?(C*)='F;H*(C*)/'Fp - H*(C*)and "G, H"*(C*)
="FpH"(C*)/"Fp.,H?(C*). When both filtrations are regular; we
have that 'Ef?='G,H?+7(C*) and "E?9=VG,H?+7(C*).

§8. THE SPECTRAL SEQUENCE OF A DIFFERENTIAL SHEAF

Let L* be a differential sheaf. We consider two cases:

(a) L7=0 for g<q,

(b) dimeX<eco with respect to a given ground ring and family
¢ of supports. _

In case (a), let L**=3L":7, where Lf’*"’:ng(X; L7)and (—=1)?d":
L#7—L?.9%1 he the differential induced by the homomorphism L%
L%+t and d': L% ?—~L?+17 he the differential of the complex CHX; L7).-
Let d=d'--d” be the total differential and L be the total complex,
where L*= 3, L#+9, -

PHT=1

There are two spectral sequences ‘E#*? and 7”E?'? of the double
complex L** converging to the graded groups associated with fil-
trations on H?*7(L*). We abbreviate this statement by the notation
Eg“:}H‘”“(L*); ‘ |

We have 'E2-7="H?(#H?(L**)) and "E2:?="H?(TH?(L**)), where
'H and "H are computed by using 4’ and d” respectively. Since
C’f; is an exact functor, we have that ”H"(L*’*)::C;j(_}{;; HI(L*)).
Thus 'Ef*?=H2(X; H?(L*)) and "HY(L**)=H7(X; L*), thus "Ep?=
H?(HI(X; L*)). .

If we are in case (b) with dimeX<n, then 0—>A—C°(X; A)—>--
—C" 4 X; A)=»Z*(X; A)=0 is a resolution of A by ¢-acyclic sheaves
and is an exact functor of A. In the discussion abOVé,. C¥(X;5 A)
should be replaced by I'y of this resolution, and then by Theorem
3.1, the spectral sequences are not changed from E; on.

8.1. Theorem. Let L* be a differential sheaf. Assume that either
dimeX <eo or that L?=0 for ¢g<¢,. Also assume that H*(H2(X; L*))=0
for ¢>0. Then there is a spectral sequence with Ef?=H2?(X; H*(L¥))
DH (o (Li*)).
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Proof. Since we have ”E;"“=H‘*(H3{X; L*))=0 for ¢>0. Thus
E27=0 for ¢+0 ' :

And from: ("EL 21l ER 0N pH2, 1)
L
|
HRE»—3,2 ans Rl ” 43, —2
Ef=52"EL0 gD

0= 4 “ F=0‘

1
\ R0 /
We have that: "EZ°="E2°=H?(I'y(L*)). And here "E'= Zq, "REgh-1
- 531‘ "E H?(L*)/"F ; + H? (L*) == H#(L*). Therefore ‘Hp(F;a(L*}) = H?
(L*).

Since L?=0 for ¢<g, or dimsX<co, thus the first filtration is
regular. Thus we have that 'Ep?=H2(X; H7(L*))=>H?+7(L*), that
is TERIDHA (Mo (L¥)). Q.E.D.

8.2. Theorem. Let L* be a differential sheaf such that H?(L*)=0
for g#0. suppose either that dimsX<co or that L?=0 for ¢g<g,.
Then, with L=H°L*), there is a spectral sequence such that:

Ep7=H’(H2(X; L*))>H2*(X; L).
H?2(X; L) g=0
_ 0 q+0.
It follows that ng(X; L) and H?(L*) are isomorphic (the proof 'is.
the same as in Theorem 81). And since the second filtration is
regular, thus we have that: ”Eg"":Hﬁ(Hg(X; L*))H2*(X; L),
Q.E.D.

Proof. We have that: ng-*‘:{

§9. THE LERAY SHEAF

_ Let f: X—=Y be continuous and let vJr be a family of supports on
X. For UcY, we let U*mf‘ltU) and let Y(U)={A|A: closed subset
of U*, and for any ¥ in U, there is a neighborhood N(%) such that
AnN*eynN*} _
Furthermore, if A is a sheaf on X, we consider the presheaf
U—=Tppy(A|U*) on Y, which is a sheaf. And this sheaf is called
the direct image of A with respect to ¢ and is denoted by fyA.
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For YrnU*cr(U), so that there is a natural map: Ieayp*(A|U*)
=Ty (A|U*)=(frA)(U). And this map induces an isomorphism of
the generated sheaves. Therefore f is the sheaf generated by the
presheaf U—>Tynux( A|U*).

9.1. Proposition. If L is a flabby sheaf and if ¢ is a paracom-
pactifying family of ':’supports on Y, then fyL is ¢-soft for any family
Jr of supports on X.

Proof. Let se(fyL)(K), where Kegp. By Theorem 4.2, there is
an open neighborhood U of K, and an extension s'e€ (/o L)(U)=
Iy (L]U*) of s. Since K has a paracompact neighborhood and since
paracompact spaces are normal, there is an open neighborhood V of
K with VcU and Veo. | l

Let s”"=s"|V*€y»(L|V*) and let £ be the zero section of L
over X—(V*n|s’|). Since s” and ¢ agree where both are defined
and since L is flabby and ¢ is paracompactifying, Corollary 4.3
implies that L is ¢-soft. Thus there is an s*e€L(X) extending both
s’ and . |s*leV*n|s'|ey(Y). Thus we may regard s* as an
element of (fyL)(Y) and s* has support in Ve¢. Therefore st is
the required extension of s to I'o(fols). Q.E.D.

Let AcX, 7 be the inclusion A—X, A be a sheaf on X, A¥=
Cx(X,A; A), ¥ be a family of supports on X, f: X—=Y be any con-
tinuous map. We consider the direct image fyA* of A* on Y. The
derived sheaf H*(fyA*) on Y is called the Leray sheaf of the map
f mod flA. Denote it by HX(f, f[A; A). If A isempty, then denote
the Leray sheaf by H3(f; A).

Since fyA* is the sheaf generated by the presheaf U—I"yqu»( A*|U*),
It follows that HZ(f,flA; A) is the sheaf generated by the presheaf:
U—H? (Iyau=(C*(X, A A)|U*))=HE, +(UX, U*nA; AU*).

For yeY, let y* denote f~*(y). Then the restriction map:
H;nu(U*, U*nA; AlU*)—rI—I1jny*(y*, y*NnA; Aly*) induces a homomor-
phism 73: HY(f, f1A; A)y—H¥,,=(y*, y* 0 A; Aly*).

- Since 0=Tpnu=(C*(X, A; A)[U* )T ynux(CHX; A) [U*)—

Tyau(i C¥(A; A|A)|U*)—0 is exact. Hence there exists a long exact
sequence: -—HZ(f, fIA; A)~>HI(f; A)=>H o (fIA; A)—~HE(f, flA;
A)—-- of sheaves on Y. Thus, it suffices to consider only the ab-
solute case in which A is empty.
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9.2. Theorem. If f is yYr-closed (that is, for any K in i, f(K) is
closed), and ¥* is vr-taut in X (which we mean that for every flabby
sheaf A on X, the restriction I'y(A)—T'yay*(Aly*) is onto and Aly*
is (Yny*)-acyclic), then »¥: HI(f; A)y~>HJay*(¥*; A) is an isomor-
phism for all A.

Proof. We consider the functors FP(A)= IirrLH”,FnU*(U*; A|U*),

u .

where U ranges over open sets containing ¥, and
| F2(A)=HZo,*(v%; Aly*).

For each Ke+r with Kny*=¢, that is yeY—f(K), since f is
Jr-closed, Y—f(K) is an open neighborhood of 7. Let U=Y—-f(K),
then U¥*nK=¢. Therefore, in degree zero, r5: FI(A) =lii1;F¢nU*(AiU*)
~>Tpay*(Aly*)=FJ(A) is well-defined and is 1—1 for arbritrary A
and onto for A flabby (since ¥* is r-taut). Applying F, and F; to
the sequence: 0—~A—C°(X; A)—~Z¢(X; A)—>0. We obtain a com-
mutative diagram with both rows are exact:

0-F( A)=>F(C(X; A))—~FUZ (X; A))—~F1(A)
 1-1 Ul } 1-1 J 1-1

0—FJ(A)—FYC*(X; A))~FUZ(X; A))—~F3(A)
By five lemma®, FI(A)—~F3(A) is onto. '
Thus F!(A)—F3(A) is an isomorphism for every sheaf A on X.
_ Then applying F* and F¥ to the sequences: 0—Z7(X;A)—~
C?(X; A)—>Z?+1(X; A)—0. And since each open set U* is +r-faut,
we obtain the sequence of homomorphisms: FYC?71(X; A))—
FUZ?(X; A))—=FUZ (X A))=FUZ*2(X; A))=-=F2Z%(X; A))=
F?(A); (which is exact at the second term).

It yvields a surjection FY(Z*(X; A))—~F2(A) whose kernel is the
image of FYC?*(X;A)). Thus the isomorphism FE(A)-—*FQ(A}
induces an isomorphism F?(A)—F3(A) for each 2. Q.E.D.

9.3. Theorem. Let AcX and f: X—Y be continuous, and let ¥
and ¢ be families of supports on X and Y respectively, A be a sheaf
on X. If one of the following conditions holds:

(A) + consists of all closed sets,
(B) ¢ is paracompactifying,



38 Applications of Spectral Sequences (1)

then there exists a spectral sequence in which:
E3-7=H2(Y; H{i(f,f[A; A))ngﬁgg(X,A; A),
where o(Yr)={Ke(Y): AAK)ep}=y(Y)nf(p).

Proof. Let A*=C*(X,A; A). Since A* consists of flabby sheaves,
if in case (A), then by Proposition 3.2 and Theorem 34, fyA*=FA
consists of g-acyclic sheaves; if in case (B), then by Proposition 9.1
and Theorem 4.6, fyA* also consists of g-acyclic sheaves. Then let
L** be the double complex composed of Lf’=*‘zC§;(Y;f¢A'f). Here
we have that fyA7=0 for g<0 and H*(H7(Y; fyA*))=0 for ¢>0.
Thus by Theorem 8.1, there is a spectral sequence |
with ER?=H2(Y; H] f,flA; A))H?+1(To(fpA¥)).

Since I'p(fyA*)=Tpiyr(A*)=C¥, (X, A; A), therefore Ep-"=>H?+1 (X,

P () )

A; A) | ~ Q.E.D.

§10. LOCALLY TRIVIAL BUNDLES

10.1. Theorem. Let j: X—~Y be a locally trivial fiber map with fiber
F, ¥ be a family of supports on X such that for sufficiently small
open set U in Y and any admissible representation of U as a product
UXF, yrnU*=Ux4g, where 6 is some fixed family of supports on F,
and let A be a sheaf on X which has the form UxB on U for some
sheaf B on F. If each 7¥ (of §9 with A empty) is an isomorphism.
Then the Leray sheaf HY(f; A) is locally constant with stalks
H¥(F; B).

Proof. We may assume that X=YXF, Y=Y X0 and A=Y XR.
Let z: X—F be the canonical projection, so that A==*B, where #*B
is the inverse image of B that is defined by: #*B={(z,b)eXxB:
n(x)=my(b), where =, is the local homemorphism B—F},

For each open set U in Y, U*=U><F'—TrF, BiA-——n-*B. Consider
each open set set VcF, we have the induced map =*°: C°(V; B)—
C¥z=*(V); A) defined by mapping the serration s: V—B into the
serration n¥%(s): n~1(V)—A given by 73 (s)(x)=n¥(s(=n(x))). These
induce a homomorphism C°(F; B)—C°(U*; A) compatible with zn*
and the inclusions A—C°(U*; A), and B—C%(F; B). This vields a
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homomorphism of the quotient sheaves, and by induction, we obtain
- homomorphisms: C¥(F;B)—>C*(U%;A) and induce the chain map
Co(F;B)—>Cynux(U*;A). Hence this give rise to a homomorphism
also denoted by =*: Hj(F; B)H},,»(U* A). Thus it again induces
a homomorphism from the constant sheaf H¥(F; B) to H* (f; A)
On the stalk at y, this homomorphism z¥: H}(F; B)—%hm Hau*(U*;

.VEU
A)=H}(f; A) ylS the inverse of #3: HY(f; A),—H¥,,=(y*; A)=H}(F
B). 'y*~ S*(y)=F). Thus H(f; A) is locally constant with stalks
H¥(F; B). Q.E.D.

10.2. Theorem. If =n: X—Y 1is an orientable #n-sphere bundle
mapping® (7%=>1). Let 4 be a family of supports on X consisting of
all closed sets, and ¢ be any family of supports on Y, B be any
sheaf on Y. Then we have the Gysin sequence:

—HF2  (X; 7*B)—~HE"*~1(Y; B)—H:(Y; B)~H!
—:»Hf;‘ (Y; B)—=>HI(Y; B) H’_‘illc (X5 a¥B)—> _
Proof. By Theorem 9.3, there exists a spectral sequence in which:

E2?=H2(Y; Hj(x; n*B))2H2 A (X; #*B)=H?Y] (X 7*B).

Let y€Y, for each K&+ with Knz"*(y)=¢. Then by the locally
trivial property and the compactness of S*=z~(y), there exists a
small open set UcY with y€U and Knz"*(U)=¢. By Corollary
48 and since YrnS* is parécompactifying, S"=f"1(y) is {r-taut. Thus
from Theorem 9.2, we know that 7}: ij,(ir, n*B)y—rij*('y*; 7*B)
is an isomorphism. By Theorem 10.1, H3(=, z*B) is locally constant
with stalks H¥(S*; B).

Therefore, EZ'?=0 for ¢#0 g#n, and Ef°*=E2"=H2(Y; B). Hence
_ EL7=F,H2x] (X n*B)/FpﬂH’jigm(X n¥B)=0 for ¢+#0, g#n.

Set p+g=~k, then
Efo_q"':thH___lc (X5 7¥B)/Fr- g+1HE
=Fy_ H*/Fy_,+,H*, and
0=+ =F, HtcF, H:=F,_Hf=
=F;_, H¥CF,_,Ht =" -Hf_lm (X; a*B)=HE*
Then EXE°=F,H* and -

E&mr=HF/F,H*

(X; 7*B)

— 1)

(X; 7*B)

= —1(p)
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And thus (A): EE'—>H:~EE ##>() is exact. Consider the two
diagrams:

(EF-21 — 5 EEORk+2 1 \ f,_}Ef:——n.n,_,Eﬁ;u+2.ﬂ-—-l \
L, l
E% E-m» 0
0: ‘ fj X U -
. I | i .
\E,, ”'”"l"*E,',‘"**Ef, Lo, —n+1 ) =0 Eﬁ—’!’”—’Ei’l
R—n—1,n Q—o IE{ | E+1,0
0B 0" —E, 0=9¢ EZ"—ELR'#0
} Proj. _
E4, E33~
o 13: | »
I
E@;O ] \ Eako—?l,n

Thus we can form the following diagram by the above two diagrams
and the sequence (A);

Bn,n
Ea

0,_>Ek—1:0.4f,.Hk—*1__,,.)Ek—n-»1,n }0

|

0

And obtain the exact sequence:

. .......)\Hk _I%Eg‘“ n—1, ﬂ_,},Ef,D_}.Hk_)EJE”’ M ﬂ_}Eé"{“}. -O%Hk "{"1___}.,, .

That is the Gysin exact sequence:
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'--—*Hﬁ‘:ﬁm(X; m*B)—>HE"*"1(Y; B)—~HA(Y; B}%Hf_lm(X; *B)—
HE="(Y; B)—>HZ(Y; B)—=HEH (X 7*B )
Q.E.D.
10.3. Theorem. Let z: X—S#*(#=>2) be a bundle map with fiber
F, L be a fixed ground ring which is a principal ideal domain. And
let 4Jr, @ be families on X, F respectively as in Theorem 10.1. Then
we have the Wang exact sequence:
> HE(X )~ H(F)—HE~#=3(F)—>HE (X ) >
Proof. Since there exists a spectral sequence:
Ef-7=H?(S*; Hi(n; L))=>HZ+2(X; L).
But H¥(z; L) is locally constant with stalks H*(F; L).
Thus Ep?=0 for p+#0, p#n, and E}?=E»?=H2(F;L). The
remainder of the proof is the same as in Theorem 10.2. Q.E.D.
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“Beauty is truth, truth beauty, — that is all Ye know on
Earth, and all Ye need to know.”

John Keats



THE 77T SIGMA TERM AND
SCATTERING LENGTHS*

I-Fu Suin

ABSTRACT

S. Weinberg’s current algebra calculation of the =z
scattering lengths involves an assumption of an isoscalar
o field and utilization of Adler’s self-consistency condition.
These are not well justified. We show here that the new
technique of the dispersion inequality can be applied to
bound the =z sigma term. This offers a check on
Weinberg’s calculation. Also this enables us to bound the
scattering lengths without the isoscalar assumption of the
o field. The results are [ <0.35m and [«®]=0.03m=2

Finally, we propose a way to further avoid utilizing
Adler’s self-consistency condition.

1. INTRODUCTION

Several years ago S. Weinberg® calculated the pion-pion scatter-
ing lengths by means of current algebra and PCAC.®®» The results
are in general consistent with most of the recent experimental data.
Nevertheless, two assumptions which are not well justified were
made in this calculation. One is the assumption that the zz o-term
is an isoscalar and the other is the assumed truth of Adler’s self-
consistency condition.® _

Here we shall show that a recently developed technique, the
dispersion inequality,® allows us to estimate the magnitude of the
nz o-tetm. This serves as an examination of the assumption
mentioned above, and also enables us to estimate the =z scattering
lengths without the isoscalar assumption and Adler’s condition.

We shall first review Weinberg’s calculation and, in the mean
time, supply many of missing steps in his highly condensed paper.

2. CURRENT ALGEBRA CALCULATION OF THE PI-PI
SCATTERING AMPLITUDE

Let us consider the following scattering process

* Work supported in part by the National Science Council, Republic of China.
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TaP) T®)

Fig. 1. The =m Scattering Process

TR TP

wa(k)+nc(p)—>ms(q)+7a(D), (1)

where a, b, ¢, and d are pion isovector indices (running over
1, 2, 3) and &, ¢, », and p' are the momenta of corresponding pions.
We write the S-matrix in terms of the invariant amplitude

ra(P)me(q) IM |z (D) ma(R)),s

(16¢°R2p° D1V g (P ) 7o (q) S|z (P)malk))
=—i(27) 404 (p+k—D'—q)ma (D )ms{q) M|z (P)ma()). (2)

Because we shall later consider some pions to be soft, the amplitude
to be dealt with is actually not on the physical threshold. It is thus
convenient to define, in accordance with LSZ reduction formalism®
and PCAC hypothesis, the off-mass-shell invariant amplitude by

[ drwduyeit=eit3Gaa(p!) I T{0.A (@), DALY} me(£))

_i(2n)04(p+h—p'—q)Frmx
—_— (qz_l_n?'i){k2+mi){4pﬂpmv2)l,’2

{ma(P')ms(q) I MIme (P)ma ()2, (3)

where F. is the pion decay constant, defined by
(2¢°V)1%01[0,A%(0) [7s(q)>=Fm2bas. (4)

Experiment gives F.~94 Mev or 0.67 ..

Using the current commutation rules
o(z*—y°)[A%Y(Y), A%(x)]=ieqs. Vi(z)d (2—Y), (5)
8(2°—y°)[AY(z), 8, AL(y)]=icas(2)0*(2—Y), (6)

where gqp(2) can be shown to be symmetric, i.e., dq1()=0s.(2),

and also noting the identity
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2 -T{AM ), B(y)}=T{0:4%(2), B(y)}+
o=y [A%z), B(y)], (7)

we see that the time-ordered product appearing in Eq. (3) can be
expressed as

T{o.A%(z), 0,AL(Y)}

_1(d 98 .0 9 Y
- 2 (633” ﬁy’ + 8@/” 8$#)T{Ab($)! Aa(y)!

_.%..{3(3;0-;;0)[&;,(.1::}, 0,A%(y)]

+0(2°—y°)[AY(y), 0. A%(2)]}

.h% _aﬁ;a(me_yn)mg(x), Ax(y)]

0B 20— 1) [AL(y), Ak(2)]}

o8 , 0 @ ,
=5 (oo st o) TIAK(®), Axw))
—10a5(2)0*(2—Y)

0

__'2_'(_8.'8” a’g“ 3635,,‘\7”(.‘3)34(33'"3]). “ ( 8 )

Substituting this into the left-hand side of Eq. (3) and integrating
by parts gives

Jawaieit5eir s g (1) I TH0.A% (2), 0, A2(0)} o (2)
=quk, [ diadiyei7eh g (31) | T{AG (), Ax(9)} |7 (p))
——z‘fd*:cd‘iye‘""‘e"“ﬁ*(m—y)é’rd(ﬁ") loas (@) |me (2)D
+a;b',,,(0+k v [ dtwdiye-itzeits 3t z—y)
<ma(®) Vi (@) |7 (0)>

=i(2ﬂ)45*(1§+k—p’-—-q){-—-z'qﬁie,,fddx’e*""’"
<ra(p) I T{A% (2 )AZ(0)} 7. (p) |
—<Lza(P")625(0) |7 (D))
~izasn CHELE Gy (81) |V 5(0) I (0D, (9)
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When we keep zn.(p) and ns($’) on the mass shell and let =.(%2) and
75(g) be soft, i.e., g*=k*—0 (so p2=p'*), the first term in Eq. (9)
vanishes because there is no pole term in this case. The third term
becomes

—ieaomulma(P') | VE(0) 7o (2)D] 5=spr
= ‘—'iaabmqaﬂ'iedﬂ:c (2{)# ) (41’0?!0\72)_-1!2
= —2(p+q) (Baadse—0acBsa) (4p2IOVE) =12, (10)

Eq. (3) shows that the invariant amplitude approaches

ra (P )ms () IM | 7o (D)o (B)) —>

M, s o (0-0) (Baabse—Bacbaa), (11)
where
M3}, == i (ADBOVEIza (2) 1005 (0) |7 ()1 . (12)

3. SCATTERING LENGTHS

From the consideration of crossing symmetry, isospin conser-
vation, and Bose statistics, the expansion of the invariant amplitude
to second order in momenta can be written in the form:

(P me(q) M|z (p)ma(k))
=0ap0cal A+B(s+a)+Cil+0.40.:[A+B(s+¢)+Cul
+0.:.0pa[A+B(2tt)+Cs]+“higher order”, (13)

where A, B, and C are constant coefficients and
s=—(p+k)? t=—(k—q)? uw=—(p—q)> (14)

Since isospin is conserved, the amplitude can be divided into
three parts corresponding to three possible isospin states T=0, I,
and 2,

<ma(0 )78 (q) Mo (B)ma()y= ZFOPE .. - (15)

The isospin projection operators® are

&3
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1

Pg‘%’caﬁgaacabd:
1

PG}, ca =g Basbea—g Basbess (16)
1 1

P(}g,ca_ 8nbacd+ 5adacb 1 3acabd.

2
After a simple calculation we will find that

FO=5A-(2s-+4u-4t)B+ (3s+u-+£)C,
FO = (u—t)B+(t—u)C, (17)
F®=2A-(2s+u+¢)B+ (u+1)C.

It is most convenient to express these three amplitudes F(™(T=0, 1,
and 2) corresponding to well-defined isospins in the form of a partial

wave expansion®,

FM (s, cos ﬁ)—Z (2141)F{"(s)P(cos 0). (18)
Unitarity allows us to write F{®(s) in terms of phase shifts

lb'rl/ s

7 107V S pisfPorgin o0M(s). (19)

F(IT)(S)

" The scattering length is, by definition,

(T) . p
'86 ) (1)
a(lll)__llm e sSin 65 (S) {20)
70 qﬁf'{-l

At the low energy limit only the s-wave is Jmport*mt. Also, on the
physical threshold s=4dm?, t=u=0, so

FOaFO(5)Py(cos ) = — 077 S_giscrsin 50(s). (21)

q
On the other hand, Eq. (17) gives
FO=5A~+8m*B-12m2C, (22)

therefore we have

ad~— 32;1”2# [BA+8m2B+12m2:C]l. . - (23)

Similarly, we also find ¢{P=0 and
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f }_

In order to compare Eq. (13) with the current algebra calcula-
tion, we let z.(p) and #z(#»') be on the mass shell and consider
7e(k) and w;(g) to be soft, i.e., g.=k,—~0 and pr=p, or equivalently

t—>0; SHmi—2pk=m:—2p-q; u—m:+2p-q. (25)
Now, the invariant amplitude approaches

ma(B)75(q) I M I (p)ma (R)D
=0a40cal A+2m B+ (8540 5+04c00a ) [A-+m2C+m: B]

—2(p+q)(B—=C)[0,40.6—02c04a]. (26)
Eq. (11) and Eq. (26) lead to
B—C=-fi- (27)

and
M&rﬂé,caxaabacd[-&‘{‘z’ﬁiB]
F (0240604 02c05a)[A+m2C+m2B]. (28)
To determine the scattering lengths, or the coefficients A, B, and C,
Weinberg assumed that the sigma field o,5(2) is an isoscalar, i.e.,
dan(2)=0s50(2), so that MY} ., is only proportional to &,;. Eq. (28)
then gives

A=—m2(B+C). ' (29)

Also used is the Adler’s self-consistency condition which states that
the amplitude vanishes when any one of the four pion momenta
vanishes and the other three are on the mass shell, i.e,,

{ma(P')my(q) IM |7 (p)malk)>=0, when s=t=wu=m. So, from Eq. (13),

A=—m2(2B+C). | (30)
Egs. (21}, (29), and (30) yield

2
A= g?g; B=0; C=—

F2 ? (31)

and then
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Tty -1
ao_gszg =0.16 m7?,
(32)
( 2m .
a~— —BT)TM'TFQ =—0.05m71.

Here we have used the experimental value F.~0.67 m. rather than
the theoretical value from the Goldberger-Treiman relation. These
results are in general consistent with experimental data.

4. ESTIMATE OF THE PI-PI SIGMA TERM

Under the isoscalar assumption for o.;(x), we may define a
form factor F(f) for the =nm o-term by

(40P OVE) g (') 1645 (0) | e (P)>=—08008.aF (£}

(33)

t=—(p—p")"
Then Eq. (12) simply states that

M?%}.caz"]%%_F(O)aabacd- (34)
On the other hand, Egs. (31) and (28) give us

M$), o= ”"13‘;’ Basbea. (35)
So we have

F(0)=m?. (36)

We would like to remark here that Eq. (36) is simply a direct
consequence of the isoscalar assumption and has nothing to do with
Adler’s self-consistency condition. It can be seen that Egs. (29) and
(27) are sufficient to yield Eq. (36).

This result is consistent with the (3, 3%)4 (3% 3) model.® In
this model, the symmetry breaking part of the Hamiltonian is #’=
—uy—cus. Consequently we can show that

6;;!;(0):—3“5("!{”2”4‘6)( 3'1‘1/2!{.0 (37)

Using Gell-Mann, Oakes, and Renner’s formula
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— (4p°D"V )M i (p) lwej |7 (P)D =B o0:r+Bd:ij1;

(38)
=), B=~Am’/c, ¢=-—1.25,

we will get F(0)=m?.

Since the technique of dispersion inequality® allows us to find
a bound on the form factor F(0), or a bound on the nxw o-term from
the propagator of o(z), it is therefore interesting to investigate
whether the bound obtained from this new technique and the above

results are consistent.
Let us start with the propagator of s(z) and assume that it
satisfies an unsubtract dispersion relation,

A(g) =i [ dze =<0 | THa(2)a(0)} |0

(39)
= [ o=t
where
(f)“—‘(sz)sgﬁ"(}”u‘“ﬁ|<0|6(0)[1’l>|“- (40)
If we take only the two-pion intermediate states, then
o607 (1) = g (L52) IR £ (41)

where F(f) is the form factor defined in Eq. (33). From Eq. (41)
we can form a standard inequality,

1 o
= @) R 1p<a), (42)
with
B(E) = o —t=33{ =t 1, (43)

The formulas provided in the appendix of reference (4) immediately
give us an upper bound of the absolute value of F(#) in the region

t<lo,

(+2)" (44)

27 1/2 .
F)I<g “5-A0) ] (+p0 =(52

il
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We need only a particular case here, namely at £=0. Putting #=0
in Eq. (44), we have

|F(0)I<8(-§-)”2Aﬂ2(0). (45)

Now we have to estimate AY2(0) in order to get the bound of
[F(0)|. As far as this is concerned, we would first assume a very
simple model, where the spectral function is dominated by a zero-

width ¢ resonance which is an isoscalar, scalar meson with a mass
of about 700 Mev. In this model then

o(t)=~6(m%—1)g%, (46)
where

g.=(2p°V)%0[a(0) [a(£)>. (47)
We adopt the value of‘g, as that calculated by Amatya, et. al.®®

go=miF2L =046 m°. (48)
Then we get

A(O)=—3§~-=0.0i7 me. . (49)

Eq. (45) therefore leads to
|F(0)|<1.06 m2 (50)

which is in agreement with Weinberg’s result.

The zero-width ¢-dominance may not be realistic, hence we would
like to try a more realistic model. First, let us note that Eq. {41)
may be developed to an inequality |

+ [, ) [Fo) < (51)
where

. R

I*=" tudt(i_ta o(t)k(t) (52)

and k(#) is an arbitrary positive weight function. With this kind
of dispersion inequality we can take into account the width of the
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o resonance®®. The bound of |F(0)| derived from this inequality
is simply o

1 . to Y2 0% In k(2) .
[F(0) [ 41‘111 eXp{““i‘“ ftodrt(T?U)—ﬂE}' (63)

Suppose p(#) is dominated by a ¢ resonance with the width I, we
can then write p(#) in the Breit-Wigner form,

mol
2 a
o(t)= L pepars (54)
(t=m? )"+ =%

’ o
This is normalized to Imp(t)dzzg?, in accordance with the zero-

width case. If we take

r(6) = g5 (£570) =y 7] 4 (59)

which is the most reasonable and the best weight function, as has
been shown in reference (10), and put m,=700 Mev, I"=300 Mev,
we shall get

IF(0)[<3.86 2. (56)

This is, of course, not contrary to the former results.

5. THE SCATTERING LENGTHS WITHOUT
ISOSCALAR ASSUMPTION

There is no a priori reason for the s-term to be an isoscalar.
Assuming that the o-term may have both isoscalar and isotensor
parts, we write

(4p°D1OVEV I mg (') |45 (0) |7 (P)D

= — 5 BasBeaFol)= s (BazboetDradao—-t Bardea)Falt).  (57)

In this case, from Egs. (12), (57), and (28), we have

L Fo(0) =5A+8m2 B+2m2C, (58)
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““I}TFz(O)=2[A+mifB+C)]. (59)
Note that in case F;(0)=0, i.e. only the isoscalar part, F{O):%—FO(O),

Now, we solve for A, B, and C from Egs. (27), (58), and (30).
The result is

5 'y TR
3 1 1 F,(0
}3=€— F2 7 5ut qu‘(z : ’ (60)

Substituting Eq. (60) into Eqs. (23) and (24) we obtain

(O, M [4+ Fol0) 1,

R2nm F2 m?

2
o~ Mx_ 16 2 Fo0)
WEm P L5 5 el 1.

(61)

Since Fo(0) is the isoscalar part of the o-term, we can now use the

bound of F(0j; but we must remember that F(O)z--g---Fu(O). If we

use the bound obtained in Eq. (56) we will have
[al”]=0.35 m_

|a®[<0.03 m=1 (62)

Finally, we simply remark that the use of Adler’s self-consistency
condition, Eq. (30), may not be justified, since this requires three of
the four pions to be on the mass shell, while in the current algebra
calculation we consider two pions to bhe soft. If somehow we can
estimate the isotensor part of the o-term, i.e. F,{0), then we can
solve for A, B, and C from Egs. (27), (58), and (59), and find a
bound on the scattering lengths. This avoids using the Adler self-
consistency condition.
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THE MASS SPECTRUM OF BARYONS

JEN-I CHEN

ABSTRACT

A new phenomenological approach has been introduced
in the study of mass spectra of hadrons. A universal
mass formula for all baryons and resonance states is thus
obtained.

The study of strong interaction so far still remains in the stage
of phenomenological analysis of mass spectra of hadrons and their
scattering amplitudes. Both are closely related, in a way, and may
be considered as the diagonal and the off-diagonal elements of the
same matrix of the still unknown Hamiltonian of strong interaction.
The knowledge of mass spectra definitely will reveal important in-
formation about strong interaction. Furthermore, the analysis of
mass spectra is much more simple, and more basic in view of the
fact that through certain reasonable assumptions, such as dispersion
relations or thermodynamic models of hadrons which we are attem-
pting, the scattering amplitudes can be calculated if mass spectra
are known.

Among enormous particles discovered in recent years, certain
empirical regularities of the quantum numbers and masses of these
particle states have been suggested. The most successful ones are
the SU(3) and the Regge schemes. The SU(3) scheme groups particles
with equal spin, parity and baryon number (but different charge,
isotopic spin and hypercharge), and is able to accommodate all
established particles into the singlet(1), octet(8), decuplet(10) represen-
tations of the SU(3) symmetry group, while the Regge scheme puts
together particles with equal parity and other internal quantum
numbers into some angular momentum rotational bands (Regge tra-
jectories). However more simple and universal empirical formulas
for mass spectra are desirable for shaping up a dynamical model of
strong interaction.
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In searching for new mass formula, Shirkov® has analized the
overwhelming majority of meson-meson and meson-baryon two-particle
resonance and bound states in terms of the special energy variable

z= (M%) —mi—m}

Shirkov obtained one universal mass spectrum for meson-meson
resonances, and two spectra for meson-baryon resonances. The re-
sults show that inside each J*-multiplet 2 varies within 1027, and the
mean values of x(J?) form a simple spectrum of a quasi-oscillator
type. This is consistent with the harmonic oscillator model® of
strong interaction in nuclear physics.

Here we introduce a new approach which leads to a more simple
and universal mass formula for all baryon and resonance states.
The essential feature of this method is the combination of SU(3)
symmetry and Regge trajectories. Starting from Regge trajectories,
the mass formula is obtained by investigating the dependence of the
trajectory constants on other quantum numbers.

Phenomenologically almost all established particles and resonances
can be fitted into certain trajectories which are approximately linear
in the energy square variables with the following expression,

a(s)=a+bs (1)

with @, and b constant for each trajectory, and varying with the
trajectories. In general, they are functions of the quantum numbers
of the corresponding trajectory, i. e. signature(r), parity(P), and other
internal quantum numbers. As is well known, b is experimentally
found to be approximately a universal constant~1 (Bev)™? for all
established meson and baryon trajectories. The main task is then
reduced to a systematical analysis of the variation of . This is done
with the heip of SU(3) symmetry grouping and symmetry breaking
effects in masses of hadrons.

For baryon spectra, we take Regge trajectories collected by
Barger and Cline®, The values of ¢ for those are found and plotted
against hypercharge(Y) as shown in Fig. 1. A few remarks about
the values taken for ¢ should be made clear here. The wvalue of
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Fig. 1. The Mass Spectrum of Baryons

a.s at Y=0 takes the average of Ay and 34 trajectories. Values
of arg are determined by the extrapolations of the upper parts of
r-octet trajectories. If the extrapolations of the lower parts are
taken instead, the curve of ars will nearly coincide with a«s, that is
equally probable since only the N,-trajectory is better established.
The figure shows three nearly parallel and almost equally spaced
straight lines which can be approximately expressed as

a~ay+a, Y (2)

with constants ¢,>~0.45 and ¢, varying with different multiplets. The
linear dependence on Y is the familiar SU(3) symmetry-breaking
effect in masses of baryons. But the near parallelism and equal
spacing is striking. In general, @, may be a function of ¢, P, and
the SU(3) indices of each multiplet. If two singlet trajectories Ag
and A, are ignored, a universal function ¢, for octets and decuplets
can be chosen to be

ay~—0.83+0.27 (1—7)P (3)
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From Egs. (1)~(3), we get a universal mass spectrum for almost all
baryons,

a®(s)~—0.83-+0.27(1—7)P-+0.45Y+s (4)

On the other hand, if a,5 is taken to be coincident with @.s and the
not so well defined aj,-trajectory is ignored, then we can approximate

a, as
ay>~—0.55—10.25(zP) (5)

Finally we would like to add some comments:

1. In above analysis, we have chosen @, to bhe independent of
the' SU(3) indices of each multiplet. The parity dependence of mass
formula thus obtained contradicts the Gribov-MacDowell symmetry
which predicts parity doublets. Should fermion conspiracy tra-
‘jectories be confirmed by future experiments, a, has to be a function
involving these indices in order to include these trajectories.

2. The same method can be applied to study the meson mass
spectrum. Unfortunately present experimental data are insufficient
for similar investigation; besides, the SU(3) symmetry breaking
effects in mesons are rather complicated.
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VISCOSITY OF ALKALI SILICATE GLASSES

UrBAN E. SCHNAUS

I. INTRODUCTION

This is a report of viscosity measurements of twenty-two com-
positions of research glass, mainly binary alkali-silica materials:
K.0-, Na:0-, and Li;O with SiO;. Samples of these materials, in the
form of small beams about 7.0 cm long and having rectangular cross-
section, 3.0 to 7.0 mm on a side, and of pe]lets in the form of right
cylinders, 6.5 mm high and 6.5 mm in dianieter, were sent to Taiwan
from the Vitreous State Laboratory at the Catholic University of
America in Washington, D.C., U.S. A., where these materials were
being studied in research projects invol'ving transmission of ultrasonic

waves® and absorption and scattering of visible light® from a
He-Ne laser.

In these researches the “fictive temperature” of the glass materials
ficures prominently. In the two publications just cited, the values
used were taken from a publication by Poole in 1949, While the
data given in Poole’s paper is remarkably good, it seemed advisable
to make some further measurements on actual melt materials being
used in the current research. That the situation is somewhat uncer-
tain can be seen in the first two publications just cited, where Ref. 1
gives T;=480°C for a 25% (mole per cent) K.O birary silica glass,
and 460°C for a 3325 K.O glass, while in Ref. 2 Table III gives values
732°K and 600°K (459°C and 427°C respectively) for the same points.

Ref. 3 has been used in other published work. In an article
discussing the inadequacies of proposed viscosity theories, the
authors®, in referring to a theoretical model based on Poole’s data
for alkali silicate glasses, state: “the data they used was scanty and
it was questionable whether the viscosity values represented measure-
ments on glass in an equilibrium state.”

In a private communication Schroeder states that “the proper
value for the fictive temperature Tf for density fluctuations is
‘T (=101 poise)—20 C°”. The major purpose of this research has
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been to make measurements of this 10 poise temperature for the
22 compositions that have been furnished. These data, with ap-
propriate discussion, are in Section III of this report. An approach
has been made to ascertain a corresponding temperature, T,s, the
fictive temperature for concentration fluctuations, which, according
to this same communication from Schroder, is T(»=10° poise). Here
the investigation has been somewhat less satisfactory, as the results
in Section III show.

II. EXPERIMENTAL PROCEDURE

A. Preparation of Sample Materials

Each of the three references first cited above describe the method
of preparation of samples. Possibly a source of difference in the
findings of this paper from those of Ref. 3 can be found here.
Poole’s measurements were made by the fiber elongation method;
the samples used were thin fibers, drawn by hand from the melt in
a small platinum crucible in a Globar furnace. The fibers used in
this method are between 0.5 and 1.0 mm in diameter and about 25c¢m
long. They had to be stored immediately after drawing in dessicators
to avoid surface attack from atmospheric moisture.

The samples used in Ref. 2 were somewhat rough parallelepipeds
1by 1by 2cm made by pouring the glass melt into molds. In
making these melts reagent-grade components were thoroughly mixed
and then melted in a Pt crucible in a Globar furnace also. “Each
melt was stirred for at least five hours to achieve homogeneity and
was then allowed to stand for an additional five hours at high
temperature” for further fining (removal of small bubbles). From
the high temperature (about 1400°C) melt the samples for the
scattering experiments were poured. They were then annealed for
six hours at a temperature close to T, for the given composition,
before being cooled to room temperature at initial rate about 2 C°/
min, after which they were placed in dessicators.

Most of these materials are very hygroscopic. In the light-
scattering experiments measurements were made with the samples
kept in oil. The beams and pellets used for the viscosity measure-
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ments here reported were made by cutting with diamond saws and
grinders using a suitable coolant oil, after which they were coated
with a heavier oil or with paraffin and packed with dessicant
materials for mailing. Before use in the beam-bending or parallel-
_ plate apparatus, this protective coating was removed with benzine
and the necessary initial dimension measurements were made as
quickly as possible while a slight amount of the coating still adhered
to the surface.

B. Method of Measurement

1. Beam-bending

This method has come into significant use since 1962¢% and is
now one of the methods approved by the ASTM for determining the
annealing point (10 poise) for vitreous materials. The version of
this apparatus used in this investigation has been described in a
previous issue of this journal®, Using samples of standard NBS
glasses we are able to come regularly within 2 or 3 C° of the certi-
ficate values for the annealing point. This value, as now determined
by the approved ASTM procedure, depends on measurements made
at decreasing temperatures and is not a true equilibrium value. The
Fulcher equations given on the NBS certificate sheets are derived
from empirical data for viscosity 10? to 10** poise and do not apply
to this annealing point determination. As can be seen on the plots
of log » vs 1000/T°K in Section III of this report, where direct
viscosity measurements for binary and ternary glasses between 10%°
and 103 poise are shown, the circled 10 poise points from measure-
ments at decreasing temperature lie close to the line drawn from
average values of viscosity measured at constant temperature.

To get sufficiently large clear samples for good beam-bending
determinations is difficult with many of these compositions. No
beams of K:0-SiO: binary glass with less than 25 mole 2 alkali were
available. A considerable number of beams of binary 1525 Na.O
glass were bent, with rather strange results, as reported below.

2. The Parallel-plate Viscometer

This is a more recent development®™. A simplified drawing of
the apparatus is shown in Fig. 1. As in the beam-bending apparatus,
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Fig. 1. Parallel plate viscometer

the central measuring element is a linear variable differential trans-
former (LVDT) which furnishes an electrical signal proportional to
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a change in linear dimension. Here we measure the change in height
of a solid right cylinder of glass as it is viscously deformed between
two parallel plates in uniaxial vertical compression. The plates are
of Inconel, a special alloy of high thermal conductivity suitable for
such high-temperature work, used here in the form of discs about
4.0cm in diameter and 3/4cm thick., The lower disc is supported
on a ceramic tube, and has drilled into one side a well for the
measuring thermocouple. The upper plate has attached to its top a
vertical metal push rod about 34 cm long, surmounted by a load pan.
Two heavy vertical metal tubes, attached to the base and held
parallel to the central ceramic tube, have at the top a guide frame
for the loading rod and for fused silica transfer rods and the device
for supporting and positioning the LVDT. A cylindrical electric
furnace can be raised to surround the sample after it has been
placed in position between the parallel plates.

In making a measurement the current in the heater windings is
adjusted to raise the temperature of the sample at a rate about 5 C°/
minute. In some glasses (“long” glasses) the softening process can
be followed through a temperature change of more than 300 C°. A
“run” requires about two hours and ends with the cylindrical pellet
changed to a disc often less than 0.5mm thick and over 25cm in
diameter.

The equation for determining viscosity by this method (Ref. 7,
pg. 595) is |

_ 2xMgh®
1= 3V (2rk V) dh/dt

where Mg is the applied vertical load force in dynes, % the height
of the cylinder at the given temperature and load point, in cm; V
is the volume of the sample cm?® and dh/df the time rate of change
of % at the given point. Minimum M for the apparatus used is 209 gm,
which is the mass of the top plate, load rod, and associated elements
of the LVDT system. Suitable change in load must be made in the
course of a run to maintain reasonably constant applied stress; loads
between 400 and 1800 gm have been found satisfactory with the
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apparatus here used. V is considered to be constant, determined
from the original dimensions of the sample. The values of % and of
dh/di are obtained from the recorder chart and from thé calibration
constant of the LVDT. Thickness % for a given point is determined
from the final specimen thickness and the change in height shown
by the total deflection of the recorder pen. The slope of the tangent

line to the curve on the recorder chart at a given temperature point
is used to find dh/dt.

An z-y recorder with a variable-speed paper take-up has been
found useful in these investigations. A programmable electronic
calculator is also very convenient for this work, since temperature
points are indicated at intervals 5 to 10 C° apart. Over 100 sample

pellets were used in this work; each recorder chart has between 20
and 40 points* '

An inherent difficulty in the use of the parallel-plate viscometer
must be mentioned. As is evident from the equation used for calcu-
lating the viscosity, accuracy of measurement of % is very critical,
since 4% and %® appear in the basic equation. Check runs using NBS
No. 710 standard glass were made throughout the course of the work,
and agreement with standard values was good between 107 and 10
poise (760°C to 630°C), with best agreement around the 107 poise
point, our » vs T plots tending to give lower temperature values at
higher viscosities and higher temperature values at lower viscosities.
For the determinations here treated the average accuracy and pre-
cision of +4 C° given in Ref. 7 (pg. 596) for this method would not
apply: =10 C° would be a more realistic figure for these investi-
gations. However, in all cases the » vs T plots are sufficiently
smooth and regular, and the usefulness of this method of determining

* Grateful recognition is due here to several FuJen University Senior Physics
Major students who helped with this work. Calvin Lin measured most of
the recorder charts from the parallel-plate apparatus to determine Ak and
ah/at; he also made sample beams and pellets of NBS standard glass with
a small diamond saw. Measurements and calculations for most of the beam-
bending work was done by Frank Chen. The black-and-white drawings for
figures in this report were made by Jeff Lin and Halliday Ong; Ong also
made water-color diagrams of the beam-bending and the parallel-plate
apparatus for wall posters in our laboratory.
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the viscosity of relatively large samples of vitreous materials has
been amply demonstrated.

III. RESULTS

A. General Considerations
A widely-used method of treating viscosity data such as these

reported here is to fit the data to an equation of the form: log;, =
o 2
103/T°K as abscissa (Arrenhius plot). This linear form has been
found suitable for many kinds of glass and is used in Ref.3 for the
11 binary and 10 ternary alkali silica compositions there studied.
Values of ¢ and b were determined for each of these compositions
by the method of least squares. This method is satisfactory for

and to display the points on a plot with » as ordinate and

most of the compositions in the range of viscosity 10° to 10** poise.
It is also fairly suitable for the range over which beam-bending
measurements can be most conveniently made, from 10*° to 10*® poise.

At higher temperatures and over wider ranges of viscosity such
linear equations are not suitable; in the widely-used Fulcher equation
discussed in Ref. 4 (pg. 1889), a third arbitrary constant is added to
make the denominator of the fraction=(T—T,). For the NBS
standard glasses No. 710 and No. 711 this gives a good fit for
viscosities between 10® and 102 poise. In the work here reported
no least-square analysis has been carried out to determine any of
these arbitrary constants. But the Arrenhius form has been retained
in Figs. 2 through 6 for convenient comparision.

In most cases it was not possible to carry the parallel-plate
measurements down to 10° viscosity, and devitrification was observed
throughout the samples when the runs were completed. On the plots
the lines have not been extended below the approximate point where
change in vertical dimension stopped with increasing temperature.
Obviously the point at which devitrification begins is at some lower
temperature which cannot be determined from our data. In all cases
the slope becomes much smaller than that of the No. 710 standard
reference glass.
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The plots have been made using average values gotten from
runs of 4 to 10 samples of each composition. For the parallel-plate
runs the value of » for points 10 C° apart was read from the original
7 vs T plots for each sample of the 15 different compositions. The
solid line of the plots was drawn from these average values, and
linear extensions to the 10** poise line have been made for most
compositions for which no beam-bending data are available.

For the 8 different compositions of beams that were studied the
scatter inherent in constant-temperature beam-bending measurements
did not warrant a direct-averaging process. However, the » vs T
data for ten or more determinations for each composition showed
adequate uniformity to make a graphical linear evaluation. This
has been translated to the Arrenhius plots to give the higher values
of » shown in lines. The circled points on the 10*® poise line are
mean values of 5 or more determinations of the annealing point by
the ASTM decreasing-temperature procedure.

Agreement with previously reported work is best for the Na.O
binary compositions of higher soda concentration; log » isokoms that
can be drawn from the data here reported are quite similar tothose
given in Ref. 3. With lower concentrations of soda or potash the
differences from -previously reported fiber-elongation data are con-
siderably greater. And for binary potash-silica compositions having
less than 20 mole 2 K:0 strange anomalies appear,

B. Discussion
1. K.O Binary Compositions

a) Figure 2 represents the widest range of measurement for
a single composition in this report. Both beams and pellets of 33%
K0 glass (glass b) were provided, and the measurements of 5 pellets
and 5 beams of this composition show good internal agreement. But
the lines for the two different methods of measurement do not join
smoothly. It may be worth noting that Poole (Ref. 3, p. 231 footnote)
found a comparable break in his line for a similar composition (his
glass No. 11, 3424 K.O) and chooses to take the slope of his line from
the two lower points. He says: “The dashed line represents the
more probable slope. This is partially justified because of the ex-
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Fig, 2. Viscosity vs 10°/T°K Ko0-Si0,: 25-40 mol 2

treme hygroscopicity of Glass No. 11 that makes such measurements
difficult.” Many others of these compositions show much the same
hygroscopicity, and the lines for pellets of 382 potash and beams
of 409 potash do not show this pronounced difference of slope around
t}f}i_s point. |

Indicated values of the 10'® poise point are as follows: a)
9594 =491°C, b) 3395=484°C, c) 3895=463°C; the corresponding values
from Ref. 3 are: 24.52=474° 30.225=450°, and 24.025=436°. The points
g, e, f, h,and i are straight-line extrapolations from the parallel-
plate data of Fig. 3, and point d has been determined by extrapolation
from parallel-plate data on this figure. Broken line s represents
certificate values for standard NBS No. 710 glass that was used for
check runs throughout throught this work and so is indicated on
this and succeeding figures.

b) Figure 3 summarizes parallel-plate data for compositions
less than 25 mole % K.0. Compositions less than 82 K.O are not
reported in Ref. 3. Ina priyate communication Schroeder states that
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his work with these compositions contains the first published report
on phase separation in K,0-SiO; binary glasses. Certainly we see
here distinctively non-additive behavior of K.O as a softening com-
ponent in silica melts: increasing concentration of potash from 6 to
8% results in decreasing softness of glass. A log 7 isokom (=100
poise) is indicated in Figure 7; itis evident that in this small range
of compositions the simple continuity of Poole’s isokom (Ref. 3,
Fig. 2 p. 231) is not followed.

The usefulness of viscosity measurements for determining
the critical immiscibility temperature in phase-separated glasses has
been demonstrated®, and the unexpected differences in these plots
seem to point to some phase-separation in this case. Considerable
theoretical and experimental work along these lines is being done,
especially at the National Bureau of Standards in Washington®:10),
working mainly with borosilicate glasses having four or more com-
ponents, The results here reported indicate that similar studies with
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these binary glasses may be of interest.*

In Ref. 2 (Fig. 4, p. 213) a smooth extrapolation is made on the
plot of T, (108 poise) vs concentration from the 8% point to ‘the
1600°K point for pure SiO.. It is evident that locating values from
our Fig. 2, points g, e, f, h and i will not give such a smooth line.
That such extrapolations are not always justifiable is indicated in
figure 4.

2. Na,0 Binary Compositions

The work done with all available samples of binary Na:O silicate
glass is summarized in Figure 4. Here the continuity between
parallel-plate and beam bending data for the 33% (glass 1) com-
position is much better than for the corresponding binary potash
glass. Also, the agreement of the 10'® poise points: k, 1, and m, with
the corresponding ones of Ref. 3 is quite good.

However, for compositions having 152 and 25% Na:O (glass j
and glass k) the results are much different. Phase separation for
composition j has been reported®?, The behavior of beam samples
used gives evidence of change in macroscopic elastic properties.
Efforts to get consistent measurements of normal viscous deflection
under load at equilibrium temperatures between 500°C and 800°C
proved futile. Several of the beams turned opalescent under this
heat treatment; the appearance of opalescence is the oldest and most
widely used method for detecting liquid-liquid immiscibility.t A
pellet cut from one of the beams that had turned opalescent was

used as a sample in the parallel-plate apparatus and showed much
different viscosity from the original clear samples.

* Conclusion (1) of Ref. 10 p. 1170 states: “that the viscosity of an oxide
system that decomposes into two immiscible liquids at a critical temperature
increases anomalously as the critical temperature is approached from above.”
Ref. 8 (footnote, p. 299) defines “critical immiscibility temperature” as the
upper phase-separation temperature of a given glass composition. In the
measurements with the parallel-plate apparatus the approach is from below
while in the ASTM procedure for determining the annealing point the
approach is from above in temperature. How close the “knee” (about 680°C)
of the curve in the 1524 Na,O binary composition of Fig. 4 is to the critical
immiscibility temperature for this composition remains to be determined by
other investigations. -

t Ref. 8, p. 299
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While the five sample pellets of glass j gave y» vs T plots of
satisfactory iiniformity, the slope of the straight line portion of the
curve is much different from that gotten by fiber elongation measure-
ments reported in Ref. 3. And, while efforts to get equilibrium
viscosity measurements by beam-bending proved futile, measurements
using the decreasing-temperature method showed reasonable con-
sistency; hence the j point on the 10'® poise line has been indicated
for this composition, though the broken line extension of the parallel-
plate data to this point is open to question. We seem to have here
another example of the “conflicting results” mentioned in a recent
publication®® dealing with these matters. . ..

The difference between the 42% and the 442 binary soda com-
positions is probably not significant; but there is a significant dif-
ference between the 402 and the 4425 composition. Comparision of
Fig. 4 with Fig. 2 shows soda to be a more effective softening addi-
tive than potash in binary silicate ccimpositions: the annealing point
values (10 poise) are 463°C and 440°C respectively for the 25% and
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the 332 binary soda compositions, while for the respective binary
potash compositions the temperature values are 491°C and 484°C.

3. Li.O Binary Compositions

A few sample pellets of binary lithium silicate glass were
supplied; Figure 5is a summary of parallel-plate data from ten runs
of three different compositions. The results show satisfactory re-
gularity, and extrapolation to the 10** poise line gives the annealing
point about 430°C for the 33 mole % Li:O binary composition, with
correspondingly higher and lower values for the 302 and the 36%

compositions.
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Fig. 5. Viscosity vs 103/T°K Li;0-SiO; glass

Earlier work with a few 33% Lis0-Si0; beams resulted in much
the same kind of conflicting results as with the 15% Na.O binary
composition. The beams became cloudy, and in some cases devitrified;
runs at equilibrium temperatures showed poor consistency, though
runs using the ASTM decreasing-temperature procedure showed
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considerably better regularity. A series of 14 determinations by this
method shows a spread of 450°C to 487°C with mean value 474°C for
the 10*® poise point. Extrapolation of the parallel-plate line for this
33% Li:O composition, glass p, is shown on the preceding Fig. 4; the
value so obtained for the 10'® poise point is 430°C. A plot of the
badly-scattered equilibrium temperature values for the composition
gives a line that puts the 10'® poise temperature about 450°C.,

4. Ternary Compositions of 75% SiO. with Na,O and K.O

Beam-bending measurements of ternary compositions containing
75% SiO; are summarized in Figure 6, The cumulative, but non-
critical, softening activity of Na.O plus K.O appears here, where the
three compositions: u, v, and w show little significant difference
above 10*? poise in determinations at equilibrium temperatures, and
the 10* poise point determined by the decreasing-temperature method
is practically the same as that from equilibrium temperature measure-
ments, But the 430°C temperature so obtained is over 30 C°less than
for binary 252 Na:O beams. The other one of the four ternary
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Fig. 6. Viscosity vs 103/T°K Nay0-K,0-Si0. glass
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compositions, glass t on Fig. 6, has annealing point temperature about
7 C° lower (484° as compared to 491°) than for pure 25% K.0 binary
glass: “doping” with 4+2 Na.O produces a significantly lower an-
nealing temperature.

While the overall agreement of these ternary 752 SiO. com-
positions with the data reported in Ref. 3 is fairly good, it may be
worth noting that our variations with temperature for the different
compositions are in the opposite direction from those reported by
Poole. The data here reported show that differences in viscosity
with change in concentration begin to appear only as temperature
increases; the 1949 data show two of the compositions, approximately
eduivalent to glass t and glass u of Fig. 6, coinciding at temperatures
above 10*° poise and diverging at lower temperatures. Assuming
that the fiber elongation measurements, like our beam-bending ones,
have been made at equilibrium temperatures, the difference in be-
havior appears to be connected with sample size and treatment. It
is to be regretted that no pellets of these compositions were available
to follow the lines down to lower viscosities.

IV. SUMMARY AND CONCLUSIONS

The results here reported are somewhat incomplete and of a
preliminary nature. As is evident from the Introduction, most of
the samples furnished came as a sort of by-product of other research
work being done elsewhere. But even with the evident gaps and
the broken-line extrapolations on Figures 2 through 6, where all the
measurements are summarized, some useful data has been obtained
for those who provided the samples, and some new information has
been gotten that may be of interest to others working in this field.

This work has been done with rather simple equipment in a part
of the world where facilities for making research glasses are severely
limited. None the less, a few significant points that appear from
this investigation may be mentioned:

1) Phase separation on a macroscopic scale in binary alkali silica
glasses may become masked by the methods of sample preparation
and measurement in viscosity determinations. The evident differences
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between the data here given and those found in Ref. 3 for binary
compounds less than 2025 Na.O and K.0O give instances of this.

2) Uniform increase of K.O concentration between 5% and 9%
in binary potash-silica glasses does not result in a corresponding
monotonic increase in “softness” of the glass. Figure 7, a log % isokom
(=10 poise) for compositions of Fig. 3 over a limited range (615°C
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Fig, 7. 103/T°K vs mol 24 K.0: K;0-5i0, glass
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to 725°C and 62 to 1025 K.O concentration), shows a distinct “dip”
around the 827 K:O point rather than the uniform increase that might
be expected. The doctoral dissertation of Schroeder recently pub-
lished has some significant discussion of this point.a®»

3) In ternary compounds: (A) Na,O+(B) K.:0-+75 mole 2% SiO,
viscosity measurements B}? beam-bending show little difference for
A between 9 and 18 and B between 6 and 16 at viscosities greater
than 10'*°® poise. Differences between these ternary compounds do
show up for 7 less than 105 poise. '

If sample materials can be obtained, work along these lines will
contmue and will be reported in the next issue of FU JEN STUDIES
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PHOTOLYSIS OF PENTAFLUOROBENZENE

S0-LAN LEM TSENG

I. INTRODUCTION

In the past two decades, the photophysical and the photochemical
behaviors of benzene and its fluorine derivatives have been interesting
" to chemists. The fluorescence yields and the triplet yields of all
fluorinated benzenes, except 1,2, 3~trifluorobenzene, were reported.®

The spectrofluorometric study on vapor phase pentafluorobenzene
(PFB) at a variety of exciting wavelengths starting at 254 nm and
extending to 278 nm showed the fluorescence of PFB to be very weak.
The fluorescent yield was wavelength dependent. At 266 nm the
quantum yield was 0.020 and independent of the pressure of PFB.
Addition of inert vapor, e.g., cyclohexane, carbon dioxide or cis-
butene-2, caused an increase in the fluorescent yield. Among all of
the foreign gases used, cis-butene-2 was the most effective one to
enhance the fluorescence of PFB.® A prediction of 1800 torr of
cis-butene-2 will save the excited PFB molecules for fluorescence.
At that point, the quantum yield will be tripled.

Like the fluorescent yield, the triplet yield of PFB was low. By
use of sensitized emission of biacetyl (BiA), when the pressure of
both PFB and BiA were 20 torr, at 266 nm, the triplet yield was
0.05. The triplet yield increased with increasing pressure of BiA.®
This may be explained by the short triplet lifetime of PFB, which
caused difficulties in the determination of the triplet yield by using
the indirect methods of measurement used. By comparing the triplet
lifetime of PFB with that of benzene, the pressure of BiA required

to pick up all triplet energy from PFB will be 110 torr, but only
0.15 torr will be enough for benzene.

The large magnitude of the quantum deficit may be due to one
or both of the following causes:

(a) Radiationless transitions to the ground state including in-
ternal conversion from first excited singlet to ground, and intersystem
crossing from first excited triplet to ground. Although the evidence
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is not conclusive, it is believed that radiationless transitions may
occur via a thermodynamically unstable isomeric intermediate.®®

(b) Photoproduct formation.

Benzvalene and fulvene have been found in photolysed benzene.(5=%
Both physical and chemical methods indicated the formation of isomers
when benzene was excited in the region of 240-270 nm. Photoisomeri-
zation of trifluorobenzenes® and hexafluorobenzene®® have also been
reported.

The photoisomerization of PFB were reported by Camaggi and
Gozzo® and Ratajczak.*® Two products were found to be 2,3,
4,5, 6-pentafluorobicyclo [2,2, 0] hexa-2,5 diene and 1, 3, 4, 5, 6,-
pentafluorobicyclo [2,2,0] hexa-2,5 diene. They were characterized
by infrared, n.m.r., and mass spectroscopy. The quantum yields of
the photoisomers would provide the information on the fate of the
excited molecules of PFB.

II. EXPERIMENT

The PFB used in this study was obtained from Peninsular
Chemresearch Incorporated. Its purity was determined by use of
gas chromatography with a 10-foot, 1/4” diameter, 10% Tricresyl-
phosphate on Chromosorb W (80-100 mesh) column, The percentage
of contamination was found to be no more than ~0.12%. It was
therefore, used without further purification.

“The ACS reagent grade glacial acetic acid used had the minimum
concentration of 99.824. High purity grade nitrogen with ~3 ppm of
oxygen content were used without further purification.

The experiment was carried out in a conventional grease- and
mercury-free high vacuum line. Pressure measurements were per-
formed by means of a spiral gauge. Mixing was effected by
circulating the vapors through a flow-through cell with an all-glass,
electromagnetically driven, piston circulating pump. The flow-through
cell consisted of an inner cylinder of quartz (diameter 3.5cm) con-
centric with the outer jacket of pyrex (diameter 10cm). The inner
cylinder was tappered to a spiral of 8 mm tubing near the bottom of
the cell. The internal volume of the cell was found to be 2.54 liter.
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The light source used was a coiled low pressure mercury 'lampi
During a run, the lamp was suspended ii:ts_ide the cylinder. To
remove the 184.9 nm mercury emission, 52% aqueous solution of acetic
acid was passed continuously through the cylinder. This solution
cut off totally the light below 245nm. At 253.7 nm, the transmittance
was approximately 532. The potassium ferrioxalate actinometer@®
was used to measure the lamp intensity. With 522 acetic acid
solution in the cylinder, the reaction vessel received 2.1x102% quanta
per hour. A continuous flow of 15ml/min of the filter solution was
maintained during the photolysed period.

For the purpose of preventing decomposition of excited PFB
molecules at high vibrational levels, nitrogen was employed. After
photolysis, the products were frozen and nitrogen was pumped away
before separation and further analysis.

The photolysed material was separated by chromatography. The
sample was introduced in the Hewlett-Packard Model 7260A GC by
a homemade heated ampoule crusher. The separation was effected
by use of a 10-foot, 3/8” diameter column, packed with 202 Diisodecyl
Phthalate on Chromosorb A (60-80 mesh).

II. RESULT

It was found that irradiation of PFB with light of wavelength
253.7nm produced small amounts of two major products. The yields
of the two products were proportional to the length of irradiation,
i.e., proportional to the intensity absorbed, up to 12 hours. As shown
in Fig. 1, the ratio of the amounts of the two photo products was
1:5. The result of quantum yield versus irradiation time was plotted
and is shown graphically in Fig. 2. The quantum yield increased
with increasing time of irradiation until approximately five hours.
With longer irradiation {ime, the quantum yields of both products
decreased slightly. This could be due to the difference of the extinc-
tion coefficient between the products and the parent molecule. The
quantum yields of photo products varied with the pressure of nitrogen
used (from 100 torr to 1 atm) during the photolysis.

The yields of the photo products were extremely low. The
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structures of the products were assigned by comparison of the
observed chromatographic retention times and by analogy with the
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Fig. 1. Number of Moles of Photo-product versus Irradiation Time
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‘Fig. 2. Quantum Yield versus Irradiation Time
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compounds studied by Ratajezak ef al.***» The one that had shorter
retention could probably correspond to structure (A) of Fig. 3, i.e,
2,3, 4, 5, 6-pentafluorobicyclo [2,2,0] hexa-2,5 diene, while the one
with longer retention could probably correspond to structure (B),
i.e., 1,3,4,5,6-pentafluorobicyclo [2,2,0] hexa-2,5 diene.

F F T H
7 F - P T F
(A) (B)

Fig. 3. Structures of Photo-products

1IV. DISCUSSION

A kinetic scheme may be proposed for the photo product forma-
tion:

PFB+ /v — 1PFBL (1)

1PFBI+M —PFBL+M (2)
‘PFBI - A, (3)
IPFB! (+PFB) — PFB(+PFB) (4)
A, — PFB (5)
A,+M—~ A+M | (6)

where A is a product. The Arabic numeral denotes spin multiplicity
while the Roman numeral denotes first excited state. The subscript
“p” indicates high vibrationally excited species, and “e” indicates
lower vibrational species including the ground vibrational level. M
represents nitrogen.

The scheme proposed was based on the following assumptions:

(a) Absorption of irradiation led to a vibrationally excited
singlet electronic state. Since the exciting light had a fairly wide
band pass and there was a natural broadening of vibrational states,
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8 1/P % 10°
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Fig. 4. Reciprocal of Quantum Yield of Photo-product versus
Reciprocal of Nitrogen Pressure

there would be a number of upper vibrational levels involved.

(b) The processes following absorption were: collision with
nitrogen molecules to cause vibrational deactivation, chemical con-
version to high vibrational levels of isomer, which might convert
to the ground state product or back to the parent PFB molecule.
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Applying the steady state treatment to the above mechanism
gives the expression for gquantum yield of product formation:

ok RIM]
= IMITh Tt kM (7)

where the square bracket represents the concentration in moles pér
liter. Since the quantum vyields were extremely low, it may be
assumed that %2;>k;[M]. The above equation then can be simplified
to:

1 _keks, ks 1 (8)
ba  ksks ' ke [M]

From equation (8), it is apparent that a plot of 1/¢. versus 1/[M]
should yield a straight line with a positive slope. This is confirmed
by Fig. 4.

The measured quantum yield of photo product formation appears
to he too small to account for the apparent quantum deficit. As the
assumption given before indicates, step 5 in the mechanism had a
rate high enough to cause a low quantum yield. As in benzene, the
photo products initially formed may be subject to further photolysis
and sensitized rearomatization, and this is probably true for the back
isomerization of PFB.

Tlhe' large quantum deficit indicates that besides chemical rela-
xation, radiationless transitions may be one of the important pro-
cesses. In general, radiationless transitions should become less rapid
as the energy separation of the electronic terms of the two states
involved increases. Thus, internal conversion from the first excited
singlet state of a molecule to the ground state and intersystem
crossing from the lowest triplet to the ground state should be
relatively slow processes, since the energy separation in these cases
is usually relatively large. Isomerization has been proposed®™ as an
alternative mode of interal conversion (S;—S,). " The excited molecule
is considered to undergo internal conversion to a vibrationally excited
state of a ground state isomer, which after vibrational relaxation
reverts to the normal ground state. With this hypothesis it can be
seen that the isomer provides an additional ladder down which the
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molecule may dissipate energy by collision and thus removes the
difficulty of the direct conversion of the entire electronic energy
into vibrational energy. If this is the case, from the above mechanism
the excited *PFBY molecule will return to its ground state via steps
3 and 5. From Fig. 4, the ratio of ks/k; and the ratio of %./k; are
found to be 14.2 and 1.22, respectively.

V. CONCLUSION

The sum of the quantum yields of the two photo isomers from
PFB was 0.01. This result is too low to explain the large quantum
deficit of PFB excited at 253.7 nm region. The large quantum deficit
is a common phenomenon of highly substituted benzene. The reason
could be the closely spaced energy levels due to the “heavy” atom
substituent.
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